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Velocity distribution in granular gases of viscoelastic particles
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The velocity distribution in a homogeneously cooling granular gas has been studied in the viscoelastic
regime, when the restitution coefficient of colliding particles depends on the impact velocity. We show that for
viscoelastic particles a simple scaling hypothesis is violated, i.e., that the time dependence of the velocity
distribution does not scale with the mean square velocity as in the case of particles interacting via a constant
restitution coefficient. The deviation from the Maxwellian distribution does not depend on time monotonically.
For the case of small dissipation we detected two regimes of evolution of the velocity distribution function:
Starting from the initial Maxwellian distribution, the deviation first increases with time on a collision time
scale saturating at some maximal value; then it decays to zero on a much larger time scale which corresponds
to the temperature relaxation. For larger values of the dissipation parameter there appears an additional inter-
mediate relaxation regime. Analytical calculations for small dissipation agree well with the results of a nu-
merical analysis.

PACS numbes): 45.05+x, 81.05.Rm, 51.26-d, 66.30.Hs

. INTRODUCTION the normal componentE(Lz-é) of the relative veIocitlez

The statistical properties of granular gases have been irfhanges. Therefore, it is termed thermal restitution coef-
tensively studied recently, in particular with respect to theficient. Using the tangential restitution coefficie®,8,10,
cluster formation procesl] and other structure formation ON€ can account for the change in tangential component of
processef2]. In the present paper we are concerned with thé_he relative velocity at the collision of rough |nela_st|c par-
dynamical processes in granular gases which precede clufi¢les. In what follows we assume that the particles are
tering, i.e., in the homogeneously cooling StéCS). As smooth and that the dynamics of a collision is completely

opposed to the state when particles form clusters and oth&escribed by the change of the normal component of the
long range structures, in the HQ8ue to its definitonone  relative velocity. . _
may drop the explicit spatial dependence of the statistical HOwever, experiments, as well as theoretical studies
properties, which simplifies an application of standard methshowed thak noticeably depends on the impact veloaity,
ods of the gas kinetic gas theory. Granular gases in the HCH.2—15; even a dimension analysis shows that the assump-
were intensively investigated recentlsee, e.g., Ref3] for  tion of the constant restitution coefficient contradicts physi-
a review focusing on the velocity distribution function cal reality[16,17. This dependence may cause rather impor-
which is one of the most important characteristics of thetant consequences for various problems in granular gas
system of granular particles. It was argued that the distribudynamics[18,19. The problem of the restitution coeffi-
tion function might deviate from the Maxwellig®,5], and  cient’'s dependence on the impact velocity was addressed in
this deviation was also quantifi¢d,6,7). Refs.[8,11], where the generalization of the Hertz contact
In all of these studies a constant restitution coefficientproblem was developed for the collision of viscoelastic par-
characterizing energy loss due to a particle collision was adgicles (a scaling analysis of this dependence was also ad-
sumed. The restitution coefficient relates the velocities of thelressed in Refl14]). The generalized Hertz collision equa-

colliding particles before a collision, andu, to the veloci-  tion derived in Ref[8] was solved analytically to obtain the
. ey oy velocity-dependent restitution coefficigaQ]
ties after the collisiony; andvs :

1 e=1- C1AC¥2/5|1;12' é| Yo+ C2A26Y4/5|1;12' é| 2Px..,
v’1‘=vl—§(1+e)(v12~e)e, (2
@ with

>

01 I
U;:U2+§(1+6)(U12'e)e,

()

3 3/2 YW
a=\|= T 4
. .. (2) mef(1—1?)
wherev ,=v—v5 is the relative velocity, and the unit vec-
tor e=ry,/|r 17| gives the direction of the intercenter vector whereY is the Young modulusy is the Poisson ratioR®"
ri,=r,—r, at the instant of the collision. Strictly speaking =R;R,/(R;+R;), mf=m;m,/(m;+m,) (R and
the restitution coefficient, as introduced in Eq(l), de- my, are radii and masses of colliding particleandA is the
scribes the collision osmoothinelastic particles, when only dissipative constant, which depends on the material param-
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eters(see Ref[8] for detailg. Numerical values for the con- 1,
stantsC; andC, obtained in Ref[20] may be also written in T()= 5 mug(t); (7)
more convenient formgL7]:
m is the mass of the granular particles; ahd the dimen-
T'(3/5)\7 sion. The temperature is related to the second moment of the

1:21/552’51“(21/1() =1.15344, (4) velocity distribution in the same way as for equilibrium mo-
lecular systems:
3 2
_2r2 d ~mu -
C2=5C1. ®) EnT(t)=f do——f(.). ®)

G 036117 are now avalablEL ] we assume fhatthe . 7€M the expansion of the scaiing funcibe) [where
dissipative constam is small enough to ignore these high- c=v/vo(t)]in terms of the Sonine polynomials reads6]
order terms.

The aim of the present study is to analyze how the f(c)=¢(c)
impact-velocity-dependent restitution coefficient, given by
Eqg. (2) for the collision of viscoelastic spheres, influences R . ) o
the velocity distribution in a granular gas of identical par-Where#(c)=m EXp(__CZ) is the Maxwellian dIS.tI’IbUt;OH
ticles in the HCS. To address this problem we use the Soninf" the rescaled velocity. The Sonine polynomids(c?)
polynomial expansion for the velocity distribution function, Satisfy the orthogonality conditions
and analyze the time dependence of the expansion coeffi-
cients. f dch(€)Sy(€?) Sy (C2) =8y Ny, (10)

We want to mention that throughout this paper we assume
viscoelastic particle deformation. This refers to relatively, .., s
small impact velocities, and, as shown in Rd#,17], ap-
plies to conditions important for astrophysical systdi®3].
Other regimes of deformation which are important for high
impact velocities, such as plastic deformation or brittle frac- So(x)=1,
ture, have not been taken into account.

In Sec. Il we introduce the necessary variables, briefly

1+ 21 apSp(cz)’ : ©)
=

pp’ being the Kroneckes, and with the normalization
constant\,, [4,6]. For dimensiond= 3, which is addressed
in the present study, the first few Sonine polynomials read

sketch the method of Sonine polynomial expansion, and Si(x)=—x*+ 5 (13)
summarize the knowledge about the velocity distribution

function in granular gases under the assumption of a constant x2 B5x 15

restitution coefficient. In Sec. lll we analyze the Boltzmann S,(X)= 5>~ ?+ R (12

equation for the granular gas with a velocity-dependeint

the HCS, and calculate the first few coefficients of the So-the coefficientsa, of the expansion may be found as the
nine polynomials expansion. We show that these coefficients | ial ts of the functich(G) [4.6:
turn out to be time dependent, so that the velocity distripy POYNOMIal MomMENts ot the unc lof(c) [4,6]:
tion function does not have a simple scaling form. In Sec. IV 1 R -
we consider the time evolution of the temperature and the ap=J\—/f chp(cz)f(c). (13
velocity distribution. The high-velocity tail of the distribu- P

tion function is analyzed in Sec. V. In Sec. VI we summarizetpe coefficientsa, do not depend on time for eonstant

our findings. Some technical detail of the calculations argeggitytion coefficien{21]. These were first applied for the
given in the Appendixes. granular gas in Ref4], and then recalculated recenfl:

Il. SONINE POLYNOMIAL EXPANSION a;=0, (14)
FOR GRANULAR GASES

. . . . 16(1—€)(1—2€?)
For granular gases where the particles interact via a resti- a,= 5
tution coefficiente=const, it was argued that the velocity 9+24d+8ed+41e+30(1—¢€)e
distribution f(J,t) has a scaling form, i.e., that its time-

dependence may be written éwere we follow notations of
Ref.[6])

(15

The first relatiorf Eqg. (14)] follows from the definition of the

temperature of the granular gathis we explain in more

detail below, while Eg. (15 has been obtained within the

linear approximation with respect . A complete analy-

7( v ) (6) sis, which goes beyond the linear approximation, was per-

v3(t) \vo()/’ formed[7], and it was showii7] that linear solutior(15) is
rather accurate for the whole range ofwith a maximal

wheren is the number density of the granular gag(t) is  deviation from a total one less than 142®]. All the higher-

the thermal velocity, defined in terms of the temperature oforder coefficients were neglected under the assumption of

the granular gas small deviations from the Maxwellian distribution. Sinag

f(o,t)=
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do not depend on time, the scaling form of the velocity dis- ( . .9 . .
tribution function (6) persists with time for the case ef &W(U)ZJ dvlw(vl)ﬁf(vlvt):f dvap(v)I(f,f)
=const.

Since the average velocity of a granular gas decreases due g,(0)a? N - - -
to the permanently decreasing temperature, the “typical” :TJ dvldUZJ de®(—viy-e)
restitution coefficient will increase with time, as follows
from Eq.(2). Thus one can expect that the coefficients of the X010 €| f(01,0)F (02, )A[h(01) + (v2)]

Sonine polynomial expansion, which depend on the restitu-
tion coefficient[see, e.g., Eq15)] should also change with
time. This conclusion, however, contradicts the assumption P
that the scaling functiori9) does not depend on time, and holds true, Wher‘élﬂ(t)):fdvglﬂ(v)f(li,t) is the average of
implies that the common scheme of calculation of the Soninéome functiony/(v), andA ¢(vi) =[ ¢(v{") — (vi)] denotes
polynomials expansion coefficients breaks dowe i§ nota a change of/(v;) in a direct collision.
constant. For for the latter case, one needs to develop a more Now we analyze the scaling ansa®) for the velocity
general approach. distribution function. Using this ansatz and performing cal-
culations similar to that in Ref.6], one would find corre-
sponding expressions for the coefficiemts of the Sonine
lIl. KINETIC EQUATION FOR THE COEFFICIENTS polynomial expansion. These would turn out to be time de-
OF THE SONINE POLYNOMIAL EXPANSION pendent due to the permanently decreasing average velocity
) _ of the cooling gas and thus the permanently increasing effec-
We start from the Enskog-Boltzmann equation for the dis+jye value of the restitution coefficient. However, this means
tribution function f(r,v,t) for a granular gas of inelastic that the simple scalingg) for the velocity distribution func-
spheres, which in the force-free case does not deperr-a on tion does not hold for the case of interest. Technically, as we
Hence one can writg5,23] show below, this follows from the additional time depen-
dence of the factog in the collisional integral, which does
not depend on time foe= const.

(18

Jd . R N .. Thus it seems natural to write the three-dimensional dis-
Ef(vlat)ZQZ(U)UZJ dsz’ ded(—viz-e)|vy €| tribution function in the general form
S UCIOLCH R R (CPILCRR) o= —F 19
L 3 1 b
=ga(o)I(1,1), (16) v5(t)
with

whereo is the diameter of the particles. The contact value of - *
the two-particle correlation functiong,(o)=(2— 7)/2(1 f(c,t):d)(c)[ 1+ E ap(t)Sp(cz)}, (20
— )2 [24] (with »=2%mna® being the packing fraction p=1

accounts for the increasing collision frequency due to the ) . . -
excluded volume effects®(x) is the Heaviside step func- and then find equations for th@ne-dependentoefficients

tion. The velocitiew* andv3* refer to the precollisional ap(é)tjbstituting Eq.(19) into the Boltzmann equatiofL6),
velocities of the so-called inverse collision, which resultsye gptain

with v; andu, as the after-collisional velocitigshe relation

between these velocities are similar to that of EL), but 1 dog d \~ - 109~ .

with an impact-velocity-dependent restitution coefficient; see - W( 3+cy 5) f(clvt)+v_ o flent)
Appendix A]. Finally the factor Yo 1 0

=ga(a)a?nI(f,9), 21)
x=1+ 131C1Aa2/5|51z' ol Y5+ g—:CfAzaMsll;m‘ 6|25+ . .. where we define the dimensionless collisional integral
7 T = f dé, f 80 (~ 61y 8|61 6]
in the gain term appears, respectively, from the Jacobian of x{xf(cx* tf(cs* t)—TF(c,t)f(Cy 1)}
the transformationdv}* dv%* —dv,dv, and from the 22)

relation between the lengths of the collisional cylinders

€lv?? -e|dt=|v,- €|dt (see Appendix A for detailsFor the  The reduced factog,
constant restitution coefficient,= 1/e>= const. 1 66
Some important properties of the collisional integral also  ~_ . 4 nz o 2s, P ~2a2i7 2
hold for the case of the impact-velocity-dependent restitution x=1+5C10 SEE 75C19 EEE R
coefficient. That is, it may be shown that the relation (23
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depends now on time via a quantity thogonality condition (10). That is, usingc?=3S,(c?)

o o 10 —S,(c?) together with expansio20) and condition(10),
8" (H)=APT2T()]"=8[2T(1)/Te]V™. (24 one easily finds

Here 6=Aa?Y(Ty) Y% T, is the initial temperature, and for

_ 3 -
simplicity we assume the particles to be of unit mass, (CZ>=f dcg(c) 550(02)—51(02) [kZO aksk(cz)]
=1. B
The rate of change of the thermal velocity,/dt in Eq. 3 3
(21) may be expressed in terms of the temperature decay rate =5~ Eal’ (32
dT/dt, which reads, according to definitio# and(8) and
relation (18) for the time derivatives of averages, with a;=1, and where we use the normalization constant

dT 1 5 N1=3 [see Eq.(10)]. From the definitions of temperature
5 —gz(o)aznvgf de, T (T ) =—=BTu,. (25 an2d ofsthe thermal velocit{Egs. (7) and (8)] it follows that
t 3 3 (c?)=3% [also see Eq. 30. Then Eq.(32) impliesa;=0 in

. ] accordance with Ref6]. Similar considerations yield
Here we defin®=B(t)=v(t)g,(c)o?n, and introduce the

moments of the dimensionless collision integral: o 15
(c >=Z(1+a2). (33
=_ coPT(FF
Kp= f descil (F,1). (26) The momentsu, may be also expressed in terms of coeffi-
o . _ cientsa,,as, . . .; therefore, systeni28) is an infinite (but
With this notation we recast E¢21) into the form closed set of equations for these coefficients.

5 5 It is not possible to obtain a general solution to the prob-
9 %z 1 %% 2 T EF lem. However, since the dissipative parameiés supposed
3te )f(c’t)+ B atf(c’t)_ (5.0, @D to be small, the deviations from the Maxwellian distribution
are not presumably large. Thus we assume that one can ne-
Note that contrary to the case ef=const, wherey=1/e*>  glect all the high-order terms in the expansi@®) with p
=const, the factoly now depends on time, which does not >2. Then Eq(28) is an equation for the coefficiea. For
allow one to write the collision integral in terms of only p=2, Eq.(28) converts into an identity, sincge?)=3, a,
scaling variables. This implies a time dependence of all the=-0, and due to Eq(31). For p=4, we obtain
momentsu,, (which were time independent for the constant
restitution coefficient and correspondingly causes a time
dependence of the Sonine polynomials expansion coeffi-
cientsa,.
Multiplying both sides of Eq(27) by ¢}, and integrating ~Where relationg31) and(33) have been used. In E(34), B
overEl, we obtain depends on time as

M2

3

4 4
ax~— §B,u2(1+a2)+ 1—SBM4:0, (34)

o B(t)=(8m)Y27:(0) [ T()/To]", (39

M2 _ :
i py_p-1 = . L . -
3 p(ch)~B gl BVkp= K- (28) where T, is the initial temperature and.(0) is the initial
mean-collision time
where integration by parts has been performed, and where

we define 7(0) "' =4m'gy(0) o’ T, (36)
R The time evolution of the temperature is determined by Eq.
Vkaj ¢(c)cPS(c?)dc (299  (2H), i.e., by the time dependence af.

The time-dependent coefficientg,(t) may be expressed
in terms ofa, according to definitior(26) and the approxi-

mation = ¢(c)[1+a,(t)S,(c?)]. One obtains

and

cP= | cPf(c,t)dc. (30) I
< f ﬂp:_%J'dclJ' dCzJ' de®(—cyy-e)[cio €| p(cy) P(Cy)

The calculation ofy, is straightforward; the first of them

read X{1+a,[Sy(c]) + Salc3)]
15 +a3Sa(c]) Sy A (cl + ch), (37
= = —_— . 1
V=0 vamg 3y with the definition ofA (c}+cb) given above. After long and

I . tedious calculationgdetails are given in Appendix )Bone
The odd momentgc=""") are zero, while the even ones garrives at the following result for the moments:

(c®") may be expressed in terms af with O<k=n. This
follows from the fact that®” may be written as a sum of  w,=&'[A;+ Aya,+ A3a3]— 8" %[ As+ Asap + Agas]
Sonine polynomial$,(c?), with 0<k=n, and from the or- (39
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and 5 2 7
~1,8/5 b2
, , U+ T 3 + 50032
=[B,+ Bya,+ Bzas]|+ 8'[ B4+ Bsa, + Bga
ma=[B1 2d2 3a5] 2[ 4 5c2 6a3] o 5 119 1547 ,
— &' B;+ Byay+ Bya3), (39 70 40U 3+ 54082+ Togooif | =
_ 44
where A, andB,, are pure numbers. The coefficients read “4
1
6 21 a,—rouuy(1+ay) + ¢ roU 2us=0. (45
A= oo, A2=§§am, -Aszzgabwo
The characteristic time
B _119 _ 4641 1
Ai=o1, As=z501 Asgagap0te (40 7o =5 Q00 7e(0) (46)
with describes the time evolution of the temperat(gee belowy,
with
0o=2 J_ZMOF( )01_6 485@ . 41  do=2"T(21/10C,/8=5"2*nT (3/5)/8=0.17338. . .,
' (47)
w1=272YT 1 C2?=9.2850 (42) ro= —— 70(0) 71, (48)
1 5 1 . Ceay 3\/5
;=2 w,/wg)=1.534% . . .. (49

and the coefficients, are

To obtain these equations we use the expressiong ftt),

— 1 — B(t) and for coefficients4,,. Note that the characteristic
Bi=0, B,=4 B:=g time 7o is 6~ !>1 times larger than the mean collision time
7.(0).
56 1806 567 We will find the solution to these equations as expansions
Bi=—wy, Bs=——swy, Bs=rme—wo, (43 in terms of the small dissipative parametefsee Eq(24)]:
10 250 12500
U=Ug+ 8- Uuy+ 8% Uyt -+, (50)
77 149054 348424
B7:Ewl’ B8zmwl, Bg:mdl)l' a2:a20+ 5~321+52-a22+---. (51)

Substituting Eqs(50), (51), (38), and(39) into Eqgs.(44) and

Thus Egs.(34) and (25), together with Eqs(24), (35), (45), one can solve these equations perturbatively, for each
(38), and(39), form a closed set to find the time evolution of order of 5. Collecting terms of the order @(1), weobtain
the temperature and the coefficient We want to stress an
important difference for the time evolution of the tempera-
ture for the case of the impact-velocity-dependent restitution
coefficient, compared to that of the constant restitution coef-
ficient. In the former case it is coupled to the time evolution
of the coefficienta,, while in the latter case there is no such
coupling sincea,=const. This coupling may lead in some
cases to a rather peculiar time dependence of the temperahere
ture. The problem of the time dependence of the temperature

and the velocity distribution function will be discussed in 1
detail in Sec. IV. r=grobs= Tc(o) (54)

5 2

. 7
U0+ 7'0 3 5 a20+ 500a§0 ug/5: 0, (52)

é20+ rlu0 st 53 =0, (53

32

and we use the definition af, and expression&?3) for 1,
and33, which are zero-order coefficients in the expansion of
M4 0N 6. Changing variables

To analyze the time evolution of the temperature and of
the coefficienta,, characterizing the velocity distribution tr=r Jdt’ 1’2(t )
function, we introduce the reduced temperatuuét) .
=T(t)/Ty, and recast the set of equatioidgh) and(25) into
the forms in Eqg. (53), one finds the solution of thigiccat) equation:

IV. TIME EVOLUTION OF TEMPERATURE AND THE
VELOCITY DISTRIBUTION FUNCTION

(55
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az(0)

1+ 35820(0)

ay(t)= (56)

1
e’— 3—2a20(0)

According to Eq.(52) the characteristic time scale fap(t)
is 79> 7.(0), therefore; fort~ 7,(0)<< 7, one can approxi-
mate u(t)=T(t)/To~1. Moreover, if the initial deviation
from the Maxwellian distribution is not large, i.e.,
a,0(0)/32<1, for this time interval one can approximate

(57)

apo(t) ~ay(0)e 57

NIKOLAI V. BRILLIANTOV AND THORSTEN POSCHEL

PRE 61

e(0)<t<T7y, a,(t) saturates to the valua,=-—hés=
—0.415964, i.e., it changes only slowly on the time scale
~7:(0).

For t>r1, the rescaled temperature varies ag
~(t/ 7o) °° [see Eq(58)], and Eq.(60) reads

é.21+ I’l('[/ 70)75/6a21: - rz(t/ To)il. (65)
Using the power-law ansatz
a(t)~(t/mo) ", (66)

the asymptotic analysis of E@65) yields the exponeni

with TE:%TC being the Enskog relaxation time. Therefore, =1/6 and an estimate for the prefactor. Thus we ﬁnd,tfor

a,(t) vanishes fort~ 7,>7.(0). This refers to the relax-
ation of an initially non-Maxwellian velocity distribution to

the Maxwellian one. Note that the relaxation occurs within
few collisions per particle, similarly to the relaxation of mo-

lecular gases.

We now assume that the initial distribution is Maxwell-

ian, i.e., thata,(0)=0 for t=0. Then the deviation from

>To,

:
Ay (t)=— r—i(t/ro)-%: —h(t/7) 6.

(67)

Thereforea,q(t) decays to zero on the time scaler, i.e.,
slowly on the time scale- 7.(0)<< 7. The velocity distribu-

the Maxwellian distribution originates from the inelasticity fion thus tends asymptotically to the Maxwellian distribu-

of the particle collisions. For the casgy(0)=0 [and thus
a,(t)=0; see Eq(56)] the solution to Eq(52) reads

T(t)

{53
= —_— = + —
Uo(t To (l To) ’

(58)

which coincides with the time dependence of the temperature

obtained previously using scaling argumef2€] (up to a

constantry which may not be determined by scaling argu-

ments.
For the ordetO( ), we obtain

. 8 2 5
n 35, o 85, 17710_
us 37 Up Uy 57 Up ap1 _3TOQ1U0 0, (59

-a21+ r 1U(jj/2a21+ I’2u8/5= 0, (60)

with

4
rzz(ﬁs)zm%sw)1’2<B4—5A1>Tcl<0>- (61)

For t< 7y we haveuy~1, and Eq.(60) reduces to

ap+riay=—ry, (62

with the solution
r
8(t)=— (1-e ")=—h(1-e “50) (63
1
where
21

3
hzrz/rlz(ﬂ))r(10)21’5C1=O.415964, (64)

and we used the definitions of andr, and the values a#i,
and B, given above. As follows from Eq63), after a tran-

tion.
One can also find the general solution of E8Q):

a21(t)= _GTOrZ eXF)[_GTOrl(1+t/To)l/6}

» f670r1(1+t/70)1lee_x 69
67gry X
Noting that
67or 1=(qod) "%, (69)
12,
6Tor2:€ ) (70)

due to the definitions orq, r,, and g, for a,(t) = da,(t)
one can write in an approximation linear with respecifo

12 . _
2p(t)=— zw(t) HL[wO]-Lilw(O)]}, (71

where

w(t)=exf (dod) *(1+t/70)"], (72)
and Li(x) is the logarithmic integral. It is not difficult to
show that from the general expressi6fil) both limiting
dependencie$63) for t< 7, and (67) for t>r, are repro-
duced.

We could not find the general solution for(t), how-
ever, one can obtain the solution fo¥ 7y. Substituting
asymptotic expressionsug(t)=(t/7,) "% and ay(t)=
—h(t/ 7o)~ Y8into Eq.(59) for u,(t), we recast this equation
into the form

. 8 2 5
U1+ §(t/7’0)71U1= §h+ §ql)(t/7'o)l7/6. (73)

Again a power-law ansatz; (t) ~ (t/ p)“ allows us to obtain
both the exponent=11/6 as well as the corresponding pre-

sient time of the order of few collisions per particle, i.e., for factor. The result fou(t) for t> 7o reads
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0

(t/ 7o)~ 16=3.26856t/ ) 11,
(74

12
Ul(t) = 2_5h+ 2ql

where we used the above results for the constarstsdq;. -2 7

From the last equation one can see how the coupling be-
tween the temperature and the velocity distribution influ-
ences the evolution of the temperature. Indeed, if there were
no such coupling, there would be no coupling term in Eq.
(59), and thus, no contribution frorh to the prefactor of
u4(t) in Eq. (74). This would noticeably change the time
behavior ofu,(t). On the other hand, the leading term in the -6t
time dependence of temperaturgy(t), is not affected by
this kind of coupling.

In Figs. 1 and 2 we show the time dependence of the
coefficienta,(t) of the Sonine polynomial expansion and of
the temperature of the granular gas. The analytical findings
are compared with the numerical solution of the system of
equations(44) and (45). As follows from the figures, the
analytical theory reproduces fairly well the numerical results

10° a,

-4 |

for the case of smalb. N
As follows from Fig. 1, for smalls the following scenario o0
of evolution of the velocity distribution takes place for a 2

force-free granular gas. The initial Maxwellian distribution
evolves to a non-Maxwellian distribution, with the discrep-
ancy between these two characterized by the second coeffi-
cient of the Sonine polynomials expansiasn The deviation
from the Maxwellian distributior{described bya,) quickly ] ‘ ‘
grows, until it saturates after a few collisions per particle at a 0 1 ) 100 10000
“steady-state” value. At this instant the deviation from the time
Maxwellian distribution is maximal, with the valua,~
—0.45 (Fig. 1, top. This refers to the first “fast” stage of
the evolution, which takes place on a mean-collision time
scale~ 7,(0). After this maximal deviation is reached, the
second “slow” stage of the evolution starts. At this stage
decays to zero on a “slow” time scale,~ & 1r,(0)
> 7.(0), which corresponds to the time scale of the tempera-
ture evolution(Fig. 1, middlg; the decay of the coefficient
a,(t) in this regime occurs according to a power lave~ /6
(Fig. 1, bottom. Asymptotically the Maxwellian distribution
would be achieved, if the clustering process did not occur.
Figure 2 illustrates the significance of the first-order cor-
rectionuy(t) in the time evolution of the temperature. This ‘ ‘ ‘ ‘ ‘
becomes more important as the dissipation paraméter 100 102 10° 10* 10° 10°
grows (Fig. 2, top and middle At large times the results of
the first-order theorywith u,(t) included practically coin-
cide with the numerical results, while zero-order theory FIG. 1. Time dependence of the second coefficient of the Sonine
[without u4(t)] demonstrates noticeable deviatioffsg. 2, polynomial expansiora,(t). Time is given in units of the mean
bottom). collisional time 7.(0). Top: a,x 1000 (solid lineg for 5§=0.001,
According to our analysis of the diffusion in granular gas0.005, 0.01, and 0.018op to bottom), together with the linear
of viscoelastic particlegl9], the clustering is expected to be approximation(dashed lines Middle: the same as the top but for
retarded, compared to the case of a constaifherefore, we ~larger times. Bottom:—a,(t) over time (log scalg for 6=0.03,
may assume that for the time shown in the figures the grand2-01, 0-003, an_dl/g).OO(IOp to bottom, together with the power-law
lar gas is still in the regime of homogeneous cooling. asymptotics~t ">
For larger values ob the linear theory breaks down. Un-
fortunately, the equations obtained for the second order ams before, on a time scale of few collisions per particle,
proximationO( 5%) are too complicated to be treated analyti- where maximal deviation from the Maxwellian distribution
cally. Hence, we studied them only numericalbee Fig. 3. is achievedFig. 3). For §=0.15 these maximal values a}
As compared to the case of small an additional interme- are positive. Then, in the second stdggermediate regime
diate regime in the time evolution of the velocity distribution which continues 10—100 collisiona, changes its sign and
is observed. The first “fast” stage of evolution takes place,reaches a maximal negative deviation. Finally, on the third,

time
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o
—_
o

temperature
o
(o]
a

0 5 10 15 20
time

FIG. 3. Time dependence of the second coefficient of the Sonine
polynomial expansiom,(t) X 100. Time is given in units of mean
collisional timer,(0). §=0.1,0.11,0.12. . . ,0.20 (bottom to top.

Thus we conclude that for the case of a not very small
dissipative paramete#, the time evolution of the velocity
distribution function(described on the level of the second
coefficient of the Sonine polynomials expansi@xhibits a
very complicated nonmonotonic behavior with a few differ-
ent regimes. Physically such behavior is caused by the exis-
tence of an additional intrinsic time scale which describes the
viscoelastic collision, and by the coupling of the evolution of
the velocity distribution with the time evolution of the tem-
perature.

The analysis performed up to now has addressed the main
part of the velocity distribution function. The most important
component of the distribution is still the Maxwellian, while
deviations from this have been quantified in terms of the
Sonine polynomial expansion. For very large velocities,
however, this is not true and the Maxwellian distribution
may not be used as a zero-order approximation. In Sec. V we
address the problem of properties of the velocity distribution
function forv>wv,.

temperature

_.
<

temperature

N
[
b

V. HIGH-VELOCITY TAIL

10 ‘ ‘ ‘ ;
] i P 1000 OF THE VELOCITY-DISTRIBUTION FUNCTION

time The high-velocity tail of the velocity distribution function

in force-free granular gases was analyzed for the case of a
=T(t)/To. The time is given in units of the mean collisional time constant re_stltutlon coefficient in R_e[§’6]' It was sh_own_ln
TC(O). Solid line: numerical solution, short-dashed |Im%(t):(1 these studies that for Iarge velocities> 1, the VelOClty dis-

+1t/79) "> (zero-order theory long-dashed line:u(t)=uy(t)  tribution function behaves dgc)~exp(—constc), i.e., that

+ 8uy(t) (first-order theory. Top §=0.05 and 0.1top to bottom.  the tailc>1 is overpopulated, as compared to the Maxwell-
Middle: §=0.15 and 0.25top to botton). Bottom: the same as the jan distribution~ exp(—¢?).

top but for log scale and larger ranges. Here we use the scheme of analysis proposed in [Bgf.

. The same arguments as in R€f5,6], lead to a conclusion
slow stagea,(t) relaxes to zero on a slow time scalery, 9 €ffs.6]

just as for smalls. In Fig. 3 we show the first stage of the that the gain term of the collisional integraimay be ne-
time evolution ofa,(t) for systems with largé. At a certain ~ 9lected forc>1 with respect to the loss term, which does
value of the dissipative parametérthe behavior changes not depend on the rgstltutlon coeffl_C|er)t. Thus, following
qualitatively, i.e. the system then reveals another time scaldX€fs-[5,6], we approximate the collision integral as
as discussed above.

Figure 4 shows the numerical solution of Eg¢44) and TER 2
(45) for the second Sonine coefficieas(t) as a function of |(f,f)=—mct(c.), (79
time. One can clearly distinguish the different stages of evo-
lution of the velocity distribution function. and forc>1 write the kinetic equatiofi27) as

FIG. 2. Time evolution of the reduced temperaturet)
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FIG. 4. The second Sonine coefficienytfor 6=0.16 over time.
The numerical solutions of Eq$44) and (45) show all stages of
evolution discussed in the text.

&ci”f(ét)m*li”f(étw— cf(c,t). (76
3 “gc gt e

If one would use expansiof20) (with coefficientsa, for

p>2 discardeglto substitute it into Eq(76) for the second
term on the left-hand side ¢¥76) atc>1 one would obtain

B‘lﬁ—f 1+a )—1 €)Sy(c?)~cte
K3 o 2) T g M $(C)S; ,
(77)
where we have used the relation
It 1gt=a,¢(c)S,(c?), (79)

with éz according to Eq(34), and definition(11) of S,(c?),
which shows thatS,(c?)~c* at c>1. We also take into
account thaje,, w4, anda, do not depend on. For the first
term in the left-hand side of Eq76) and for the right-hand
side of Eq.(76), this substitute yields, correspondingly in the
same limitc>1,

af
Coo™ —cbe ¢, (79
Ct~coe <. (80)

From Eqgs.(77), (79), and (80) it follows that, although all

terms in the Eq(76) have the same factcef‘cz, the expo-
nents of the power of of the prefactor are different for all
terms. This means an inconsistency of substitutf), with

a, for p>2 discarded, foc>1. Similarly, it may be shown
that such an inconsistency appears for any order of the So-
nine polynomial expansion. Indeed, using the Sonine poly-
nomial expansion20) up to (arbitrary order n yields the
estimate~c(2"*2e=* for the first term and~c2"e<" for

the second term on the left-hand side of Ep), while for

the right-hand side of Eq76) one obtains~c2n+De=¢*,
However, the exponential ansatz

T(c,t)~exp{—o(t)-c} (81)

for the kinetic equatior{76) turns out to be self-consistent
for c>1. Substituting this into Eq(76), one finds that the
function ¢(t) in Eq. (81) must satisfy

1
et §MZB‘P:7TB, (82

where the time dependence®fs given by Eq.(35), andu»

depends on time via,(t) according to Eq(38). In the ap-
proximationa,~ &, linear with respect tas, and therefore,
according to Egs(38) and (40), u,(t)=6"wg. Then, using
the definition(24) of &’ and expressioni35) for B(t), one
obtains

pa(DB(1) = gralu3’5<t>,
(83)

B(t)=

-1
%Ullz(t),
aw
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with 7 being defined by Eq46). With Eqg. (58) for the time  the dissipative parametérwe detected two different stages
dependence of the temperature in this approximation, Edn its time evolution: a first fast stage, which develops on the
(82 reads time scale of the mean-collision time; and a second, slow
(-1 stage on the time scale o> 7., on which the temperature
aw
— — _ -1
1+ TO) ¢ \fsrc<0>

of the granular gas changes. In the fast stage a maximal
deviation from the Maxwellian distribution is achieved, and

Substituting the ansatz~ (1+t/7y)”, we find the exponent

v=1/6 and the prefactor, so we arrive at the final result

—5/6

1+ —
70

—
67'0
(84)  then the deviation relaxes to zero during the second slow
stage. Our numerical results agree well with the predictions
of the analytical theory for smalf.
When é is not small, a much more complicated time be-
1/6 havior of the coefficient, has been revealed. In addition to
, (85 the two stages of evolution which were observed for the case
of a small dissipative parameter, a regime of intermediate
with relaxation has been detected. Physically such complicated
behavior is caused by an additional intrinsic time scale which
=l 5 57/5 describes the viscoelastic collision, and by a coupling of the
b= \@( 16q0) = 292 (3/5) =2.259B... . (86) teevr(T)]Iution of the velocity distribution to the time evolution of
perature.

We also analyzed the high-velocity tail of the velocity
distribution for the case of the impact-velocity-dependent
restitution coefficient for viscoelastic particles. We found the

(87 same exponential overpopulation for the tail as for the con-
stant restitution coefficient. However, contrary to the latter

Note that the obtained expressi8) refers only for times ~ CaSe€; where the overpopulation of the tall per;ists With_ti_me,
t>7,(0), when the deviations from the Maxwellian distribu- it decreases for the impact dependent restitution coefficient,
tion are already well developed; it is not applicable for the@nd the velocity distribution tends to become Maxwellian as
transient timeg~ 7¢(0). the system evolves.

As one can see from Eq87) the overpopulatior{with The homogeneous cooling state is the simplest part of the
respect to the Maxwellian distributiprof the high-velocity ~ evolution of a granular gas which precedes all other evolu-
tail decreases with time on the same time scale, as tion steps, which involve spontaneous cluster formation,
a,(t), i.e., the velocity distribution in the system approachescomplicated structure formation in the velocity field, etc.
the Maxwellian. However, it should be noted that the abovePresently we are far from being able to develop a full theory
considerations are valid as long as the overpopulation in thef the evolution of granular gases, beginning from their gen-
tail is significant enough to make the gain term in the colli-eration and extending to a fully developed variety of struc-

o(t)=hs™t

1+ —
70

Thus the velocity distribution function reads, for 1,

1/6

t
1+ —
7o

7 b
(c,t)~ex _EC

sion integral negligible as compared to the loss term. tures. Therefore, we consider the results for the homoge-
neous cooling state only as the first step toward
VI. CONCLUSION understanding the complicated evolution of granular gases.

. T Astrophysical systems such as planetary rigge, e.g., Ref.
We studied the velocn_y dlstr|bu_t|on n-a homo_gen_eou_sly[zs]) possibly originate from catastrophic impacts of heavy
coo_llng granular_ gas of V'SCOE|aSt'.C p_artlcles, .W.h'Ch Impllesobjects with a planet, which generates a cloud of dust. This
an impact-velocity-dependent restitution coefficient. Wwe O.b'cloud will then undergo an evolution whose first regime
served that, contrary to the case of the constant restitutiori ight be considered a homogeneously cooling gas. As fol-

icnozﬁé?rlr? nlté t:ceal?r:snéglrjrtrzor\]/vLueanetI?hne r'Srarlwye ndo(;t beiéigrceesz?ﬁigws from results reported here, the evolution of the velocity
P g ¥ P istribution and temperature even in this simplest state is far

function occurs only via the time dependence of the tempera?—rom being trivial

ture. The dependence of the restitution coefficient on the
impact velocity causes a time dependence of the coefficients
of the Sonine polynomial expansion, which describes the de-
viation of the velocity distribution from the Maxwellian.

We analyzed the time evolution of the temperature and of
the second coefficient of the Sonine polynomials expansion The authors want to thank I. Goldhirsch and M. H. Ernst
a,. Contrary to the case of the constant restitution coeffifor helpful discussions. The work was supported by
cient, the evolution of temperature is now coupled to theDeutsche Forschungsgemeinschaft through Grant No. Po
time evolution ofa,. 472/3-2.

For small values of the dissipative parameferwe de-
veloped an analytical theory for the time evolution of the
temperature of the granular gas and for the coefficient of the APPENDIX A: DERIVATION OF EQ. (17)

Sonine polynomial expansioa,; the case of largep was
studied numerically. We observed a complicated nonmono- The change of the particle velocities due to the inverse
tonic time behavior of the coefficieat,. For small values of  collision is described by

ACKNOWLEDGMENTS
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v1=vi* —%[1+e<g** )lg** €,
1 (A1)
172217’5* +§[1+ (g™ )]g™ 6,
where we introduce the normal relative velocity**
=u%5 -e, and where
E(g** y=1— ClAa2/5|g** |1/5+ C2A2a4/5|g** |2/5I ( ,2)
A

according to the viscoelastic character of the partiftee
Eqg. (2)]. EquationgAl) and(A2) imply the conservation of
momentum

l;l‘l‘ljzzl;’l\‘* +J;* ’ (A3)

and the relation
g=—€(g™)g**, (A4)

with g=v,- €. UsingC,=2C? [Eq. (5)], one can also write

3
g** =—g 1+ClAa2/5|g|l/5+§(ClAa2/5)2|g|2/51 . :|

(A5)

We use Eq(A5) to find the relation between the length of

the collisional cylinders|g|dt and|g** |dt, when the trans-
formation of variables/¥* ,v3* —uv,v, is made in the col-

lisional integral. One also needs the Jacobian of this trans-
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Combining Eq(A8) with Eq. (A5), which relates the lengths
of collisional cylinders, one arrives at the facypfEq. (17)]
in the collisional integral.

APPENDIX B: DERIVATION OF THE MOMENTS i,
[EQS. (38 AND (39)]

To calculate the moments

pp=— %J’ délj dézj dé@(—élz'é)|612'é|¢’(cl)¢(02)
X{1+a,[S,(c]) +S,(c3)]

+a355(c1)Sy(c3)}A(c] +ch) (BY)
it is convenient to use the center of mass veloﬁyand
relative velocityc,,, such that

I I
c,=C+ §C121 c,=C— Eclz. (BZ)
The Jacobian of transformatidiB2) is equal to unity, and
the productg(c,) $(c,) transforms into

. N 1 1 2 3/2
¢(C1)¢(Cz)—’(2T)3/ZGXF( - EC%Z) (;) exp(—2C?)

= ¢(C19) $(C). (B3)

formation. To calculate this, it is convenient to choose the

coordinate axiZ along the intercenter vecte, i.e.,

0=012,=V1;V2z- (A6)
Then, from Eqgs(Al), it follows that
UI”;(:ULX, v’{,’;:vl,y-
U;;:UZ,xv U;;:UZ,y!
(A7)

1
vY; =viz+ (9" —9),

*k _
U2,z -

b Ly
2,Z 2g g;

where the value of** is expressed in terms af (i.e., in
terms ofv, , andv,,) according to Eq(A5). Thus Eqs(A7)

In terms of the variable€ and clz the quant|ty[82(cl)
+Sz(cz)] in Eq. (B1) may be written as

1
C2c?,-5C?

explicitly express all components of the inverse-collision ve-

locities v** andv%* in terms ofv; anduv,. For the Jaco-

bian, straightforward calculations yield

e - 6
do}* dv3* =| 1+ zCiAa™g|™®

21
+ _(C Aa 2/5)2|g|2/51 .

5% dv,dv,.

(A8)

[32(01)"‘32((32)] C4+(C Clz)2 C12+2
5, 15
_ZC12+ Z (B4)
For S,(c2)S,(c3), we obtain
Sy(c)Sy(c5) =Ky + Ko+ Ka+ Ky, (B5)
where
K—1C8 506 650 7502 B6
174 2 8 8 (B6)
< 1 5 . 65 , 75, .
2= J024%0 T2aChet 1280t 3% (BY
3 1 1
Ky= 32c:“c - Zcﬁc§2+ 6—4CZc12— §C4C§z
15 ,, 65
— 3—2C C12+ 16C C12, (88)
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1 . - 1 . - 1 N
Ka=7(C-c19)*= 7CHC-c1p)’cl~ 5CHC C1p)°

1 5 ) 2, 5 )
32 (C-€19)? 012"‘ SC3(C-Cpp)%+ C C1p)2cs,
35 . . 2, 15\? 89
g( “C1)°F 3l (B9)

For the quantities\ (¢} +cb) (p=2 and 4, we find

1. .
A(ci+e))=—5(Crpre)*(1-¢) (B10)

and
4., 4 2,2 *2**21 223 2\4
A(CI+C2):2(1+E) (Clz'e) (Ce) +§(1_E ) (Clz'e)
1 22 2\232 _ R2 2R 22
_Z(l_f )(C12-€)°C1,— C(1—€%)(C1p €)

—4(1+€)(C-cp)(C-e)(Cype). (B11)

Substituting Egs(B4), (B5), (B10), and(B11) into Eq.(B1),
and using the expansions

.. 11 . -
(1- 52):2C15/(t)|clz'e|l/5_§ci5'2(t)|012' e[?o+ ...,

(B12)

(1+€)2=4/1—C15'(t)|Cypr €]V
* ;—(7,055’2(t)|512~ e?+...|, (B13
(1-€%)?=4Ci8'2(t)|Crp €5+ - -, (B14)

one observes thai, and u, may be expressed in terms of
the basic integrals

Jk,l,m,n,p,azfdaﬁf déf dé@(—612-§)|612-§|1+“

X $(€12) p(C)CciAC-C1)™(C-€)"(C1p-€)P.
(B15)

That is, foru, one has

1 , (1

M2 :_5 C1]J0,0,0,0,2,1/5" a2k 5 +a;M 5
1, , (2
_ﬁj5 cs J0,0,0,0,2,25t AL 5 +a;M 5

(B16)

where we define
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L(a)= J4°°°2‘”+J°°202"+16J0'4'°'0*2"‘+ 532,2,0,0,2a

15
59200027 7J02002F 77 J0.0002

(B17)

1 5
M(a)= 1 J8.0,0,020— zJe,o,o,o,za +

65

8 ‘]4,0,0,0,2a

75
8 920002t 1024 705217080022 58‘)0,6,0,0,241

65 75
+ 1—28\30,4,0,0,2a_ 3_2‘]0,2,0,0,2a+ 3234 40,0,2

1 15
+ 7962002 &_‘]2,6,0.0,241_ §J4,2,o,0,2a

65 1 1
+ 53\12,2,0,0,241jL ZJo,o,A,o,za 2 7922202

1
- EJ4,O,2,0,2¢_ 3_2‘]0,4,2,0,2¢x+ §J2,0,2,0,2a

5 35 15\ 2

+ §30,2,2,0,24_ 530,0,2,0,24(4' 8

JO,O,O,O,Z@( .

(B18)

The basic integrals may be calculat&tetails are given in
Appendix Q, and the following expressions are obtained:

(_l)px 8% 2(—k+|+p+a—l)/2
(p+a+2)(m+1)

Jk1.mop.a=

k+m+3

X[1= (=)™ 1| —

[+m+p+atsd
2

(B19)

for n=0,

(_1)p+l><4x2(7k+|+p+a)/2
(p+a+3)(m+2)

Jk,l,m,l,p,a:

+m+4
2

k
><[1—(—1)m]r(

xT (B20)

I+m+p+a+4)
2

forn=1 and
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(_1)p><4><2(—k+|+p+a—l)/2
(p+a+2)(m+1)

Jtm2p.a=

k+m+5

X[1—(—-1)™4r >

p+a+l 1
m-+3 Jrm+1

(B21)

(|+m+p+a+4
2

for n=2.

When we compare Eq$B16) and (38) for u,, and use
relations(B19), (B20), and(B21) for the basic integrals, we
find

Y4,

1 21
A1:§C130,oooz 15~ 2V27721/10F(1—0) C,=6.485€ . ..

(B22)

=wg,

11 16
A4:Z)C§Jo,ooo 2,2/5= \/27721/5F(§) 0529-285@ ce

Computing from the basic integraly«) and M («) for «
=1 and £, and using the relation for thE function I'(x
+1)=xI"(x), we obtain

—1C L h_o® B24
Az—z 1L 5] = 5590 (B24)
11, (2} 119
As=55CIL| £] = 2551 (B25)
A—ch h_ 2 B26
3_5 1 g _2500(1)01 ( )
y —11C2M 2\ 4641 -
67201\ 5/~ 640000”1" (B27)

Similar calculations may be performed far,, and yield
Eq. (39), with the coefficients5, expressed in terms of the
basic integrals:

1Whés Ly

(B28)

82:_4 1_6‘JO,4,0,2,2,0_‘J4,0,1,1,l,6l_JO,0,2,2,2,0_‘J0,O,3,1,1,0

1
+340,0220 1—630,4,1|1,1,GF532,2,0,2,2,0_ 532,2,1,1,1,0

5

4\]0,2,0,2,2,0Jr 130,2,1,1,1,0_ 5J20,0,22,0992,0,1,1,1,0

15 15

+ 130,0,0,2,2,0_130,0,1,1,1,(; =42, (B29)
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8424(:1( J0,0,0.2,2,15 530,0,1,1,1,1/54' 1—63.]0,2,0'0,2,1,5
1 56 21, 28
+ 232,0,0,0,2,1/% = g\/ZWZl/lOF(E) Cy=¢ wo,
(B30)

11

17
B= Ci( K)Jz,o,o,o,z,z/s+ 4_0~]0,2,o,0,2,2/5+

J
5 v000.222/5

1 6 77 16
+70000425 330,0,1,1,1,2/9 =10V ZWZI/SF( g) ci
77

= 1501 (B31)

We do not give the expressions for the other few coefficients
By in terms of the basic integrals, since they are too much
cumbersome to be written explicitly. Computations of these
is straightforward, and yields the results

1

By=gV2m, (B32)
1806

85 = 2_50 wq, (833)
567

Bs=Toe000" (B34)

149054
348424 a6
Bo= 5500000t (B36)

APPENDIX C: CALCULATIONS OF THE BASIC
INTEGRALS Jy | m.np.a

In this appendix we give some details for the calculations
of the basic integraldy | m n,p,.- We need only integrals for
n=0, 1, and 2. Evaluation of the integral for=0 is
straightforward; however, fon=1 and 2 it requires some
tricks which are described, e.g., in RE23].

For n=1 the basic integrals may be written as

Ikt mipa= J dg f dCe(g)¢(C)C*g'(C-g)™(C-1(g)),
(CD

with 65612, and with the vectorial integral

F(g)zf du 8G-6(g- &P, €2

with the short-hand notatiody.=de®(—g-e€)|g-€.
Similarly, for n=2 one can write
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Jk,|,m,2,p,a=fd§f dCe(g)¢(C)C¥g'(C-g)"C-H(g)-C, d-ﬂ~§=Ag“+Bg“=Jdé®<—d~é>|§~é|1+“<cj-é>p+2
C3
€3 2m(—1)P
N . . :—gp+a+3 (Cg)
where the dyadH(g) is given by p+a+d
A= [ duédgdeger. (4  and

and where> denotes a direct vector product. Due to symme-

try one can writel (g)=gG(g), where the functiorG(g)
may be found from the equation

Tt fi=AgP+ 387 [ d0(~3-9)lg-6* (g °

_2m(—1)P

“prar2d (C10

6-T(0)-°6(g)= [ d86(~G-8)d- & (g P+
(CH Solving the set of equation&C9) and (C10 for A(g) and

The integral on the right-hand side of EG.5) may be evalu- B(g). we obtain

ated using spherical coordinates:
27T(_1)pgp+a*1

R o L Lo 2 _1 r I:|:
fd<—g'e>|g-e|ﬂ<g'e>'=£(,ﬁ)lgf+ﬂ. (co) (pra+d)p+at2

)[<p+a+1>§oé+920].
(C1)

This yields the functiorG(g) and, thus, the vectorial integral With Egs.(C7) and (C11) the basic integralsy mnp.a for

. LA n=1 and 2 can be reduced to the integrals
= —1ypt1i 2
l(g)=2m(~1)P" g, €7
N J ~ kKtviyl+ptatvy ;. qym+r
For the dyadH(g) one can also use symmetry arguments to f dgf dCh(g)$(C)C™ g HC-g)™
write (C12
H(g)=A(g)g°g+B(9)g?U, (C8  with »,=0, v,=0, andrvs=1 to evaluate the integral for
. _ ' . o n=1, and withy;=0, v,=—1, andv;=2 andv;=2, v,
whereU is a unit dyadi.e., a diagonal matrix Multiplying =1, andw;=0 for n=2. The computation of these integrals
H from both sides by and then taking a trace, we obtain the is straightforward, and yield the final resuli®19), (B20),
set of equations for the functios(g) andB(g): and(B21) given above.
[1] I. Goldhirsch and G. Zanetti, Phys. Rev. L&, 1619(1993; same result for the dissipative force was obtained in Ref.

S. McNamara and W. R. Young, Phys. ReVvs® R28(1993; [9] P. Cundal and O. D. L. Strack, Geotechnidi® 47 (1979.
F. Spahn, U. Schwarz, and J. Kurths, Phys. Rev. Z&t1596  [10] S. Luding, M. Huthmann, S. McNamara, and A. Zippelius,
(1997; T. Aspelmeier, G. Giese, and A. Zippelius, Phys. Rev. Phys. Rev. B58, 3416(1998; M. Huthmann and A. Zippelius,

E 57, 857(1997; P. Deltour and J. L. Barrat, J. Physz,1137 ibid. 56, R6275(1997).

(1999. [11] W. A. M. Morgado and I. Oppenheim, Phys. Rev5Ek 1940
[2] J. A. C. Orza, R. Brito, T. P. C. van Noije, and M. H. Ernst, (1997; G. Kuwabara and K. Kono, Jpn. J. Appl. Phy&5,

Int. J. Mod. Phys. @8, 953(1997; T. P. C. van Noije, M. H. 1230(1987).

Ernst, R. Brito, and J. A. G. Orza, Phys. Rev. L&®, 411 [12] R. M. Brach, J. Appl. Mech56, 133(1989; S. Wall, W. John,

(1997; R. Brito and M. H. Ernst, Europhys. Letti3, 497 H. C. Wang, and S. L. Goren, Aerosol. Sci. Techrid, 926

(1998. (1990; W. Goldsmith,Impact: The Theory and Physical Be-
[3] A collection of recent reviews on granular gases can be found  haviour of Colliding Solids(Arnold, London, 1960 P. F.

in Granular Gases edited by T. Pschel and S. Luding Luckham, Powder Technob8, 75 (1989; S. F. Foerster, M.

(Springer-Verlag, Berlin, 2000 Y. Louge, H. Chang, and Kh. Allia, Phys. Fluids 1108
[4] A. Goldshtein and M. Shapiro, J. Fluid Mec282, 75 (1995. (1994); S. Hatzes, F. G. Bridges, and D. N. C. Lin, Mon. Not.
[5] S. E. Esipov and T. Rzhel, J. Stat. Phy$6, 1385(1997). R. Astron. Soc231, 1191(1988; E. Falcon, C. Laroche, S.
[6] T. P. C. van Noije and M. H. Ernst, Granular Matter 57 Fauve, and C. Coste, Eur. Phys. J3B45 (1998.

(1998. [13] F. G. Bridges, A. Hatzes, and D. N. C. Lin, Natuteondon
[71N. V. Briliantov and T. Pschel, Phys. Rev. B1, 2809 309, 333(1984%.

(2000. [14] S. Luding, E. Clement, A. Blumen, J. Rajchenbach, and J.
[8] N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. detel, Duran, Phys. Rev. B0, 4113(1994.

Phys. Rev. E53, 5382(1996. Using a different method, the [15] F. Gerl and A. Zippelius, Phys. Rev. 39, 2361(1999.



PRE 61 VELOCITY DISTRIBUTION IN GRANULAR GASES CF . .. 5587

[16] Y. Taguchi, J. Phys(Parig Il 2, 2103(1992. [22] Actually as it has been shown for the case afomstantresti-

[17] R. Ramirez, T. Pschel, N. V. Brilliantov, and T. Schwager, tution coefficien{ 7], that there are three different solutions for
Phys. Rev. B50, 4465(1999. a,, when a complete analysige., going beyond the linear

[18] K. A. Hameen-Anttila and J. Lukkari, Astrophys. Space Sci. approximation fora,) is performed. However, only solution
71, 475(1980; H. Salo, J. Lukkari, and J. Hanninen, Earth, (15), which is just a linear approximation of the total solution
Moon, Planets43, 33 (1988; F. Spahn, U. Schwarz, and J. [7], corresponds to a velocity distribution function that is
Kurths, Phys. Rev. Lett78, 1596 (1997; T. Paschel and T. stable with respect to small perturbations in the case afra
Schwageribid. 80, 5708(1998. stantrestitution coefficienf7].

[19] N. V. Brilliantov and T. Pschel, Phys. Rev. B1, 1716 |53 p Resibois and M. de LeeneGlassical Kinetic Theory of
(2000. Fluids (Wiley, New York, 1977.

[20] T. Schwager and T. Rahel, Phys. Rev. B7, 650(1998.

[21] A detailed analysis of the time evolution of a granular gas with
constantrestitution coefficient at HC$7] shows that the co-
efficients a, (the case ofa, was considered in Ref.7])
quickly (i.e., during a few collisions per partigleelax to a
constant value and then do not change with time.

[24] N. F. Carnahan and K. E. Starling, J. Chem. PHyk. 635
(1969.

[25] R. Greenberg and A. Brahi®lanetary Rings(Arizona Uni-
versity Press, Tucson, 1984A. Brahic, in Granular Gases
(Ref. [3]).



