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Velocity distribution in granular gases of viscoelastic particles

Nikolai V. Brilliantov1,2 and Thorsten Po¨schel1
1Humboldt-Universita¨t zu Berlin, Institut fu¨r Physik, Invalidenstraße 110, D-10115 Berlin, Germany

2Physics Department, Moscow State University Moscow 119899, Russia
~Received 15 November 1999!

The velocity distribution in a homogeneously cooling granular gas has been studied in the viscoelastic
regime, when the restitution coefficient of colliding particles depends on the impact velocity. We show that for
viscoelastic particles a simple scaling hypothesis is violated, i.e., that the time dependence of the velocity
distribution does not scale with the mean square velocity as in the case of particles interacting via a constant
restitution coefficient. The deviation from the Maxwellian distribution does not depend on time monotonically.
For the case of small dissipation we detected two regimes of evolution of the velocity distribution function:
Starting from the initial Maxwellian distribution, the deviation first increases with time on a collision time
scale saturating at some maximal value; then it decays to zero on a much larger time scale which corresponds
to the temperature relaxation. For larger values of the dissipation parameter there appears an additional inter-
mediate relaxation regime. Analytical calculations for small dissipation agree well with the results of a nu-
merical analysis.

PACS number~s!: 45.05.1x, 81.05.Rm, 51.20.1d, 66.30.Hs
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I. INTRODUCTION

The statistical properties of granular gases have been
tensively studied recently, in particular with respect to t
cluster formation process@1# and other structure formatio
processes@2#. In the present paper we are concerned with
dynamical processes in granular gases which precede
tering, i.e., in the homogeneously cooling state~HCS!. As
opposed to the state when particles form clusters and o
long range structures, in the HCS~due to its definition! one
may drop the explicit spatial dependence of the statist
properties, which simplifies an application of standard me
ods of the gas kinetic gas theory. Granular gases in the H
were intensively investigated recently~see, e.g., Ref.@3# for
a review! focusing on the velocity distribution functio
which is one of the most important characteristics of
system of granular particles. It was argued that the distri
tion function might deviate from the Maxwellian@4,5#, and
this deviation was also quantified@4,6,7#.

In all of these studies a constant restitution coefficie
characterizing energy loss due to a particle collision was
sumed. The restitution coefficient relates the velocities of
colliding particles before a collisionvW 1 andvW 2 to the veloci-
ties after the collision,vW 1* andvW 2* :

vW 1* 5vW 12
1

2
~11e!~vW 12•eW !eW ,

~1!

vW 2* 5vW 21
1

2
~11e!~vW 12•eW !eW ,

wherevW 125vW 12vW 2 is the relative velocity, and the unit vec
tor eW5rW12/urW12u gives the direction of the intercenter vect
rW125rW12rW2 at the instant of the collision. Strictly speakin
the restitution coefficiente, as introduced in Eq.~1!, de-
scribes the collision ofsmoothinelastic particles, when only
PRE 611063-651X/2000/61~5!/5573~15!/$15.00
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the normal component (vW 12•eW ) of the relative velocityvW 12
changes. Therefore, it is termed thenormal restitution coef-
ficient. Using the tangential restitution coefficient@9,8,10#,
one can account for the change in tangential componen
the relative velocity at the collision of rough inelastic pa
ticles. In what follows we assume that the particles a
smooth and that the dynamics of a collision is complet
described by the change of the normal component of
relative velocity.

However, experiments, as well as theoretical stud
showed thate noticeably depends on the impact velocityvW 12
@12–15#; even a dimension analysis shows that the assu
tion of the constant restitution coefficient contradicts phy
cal reality@16,17#. This dependence may cause rather imp
tant consequences for various problems in granular
dynamics @18,19#. The problem of the restitution coeffi
cient’s dependence on the impact velocity was addresse
Refs. @8,11#, where the generalization of the Hertz conta
problem was developed for the collision of viscoelastic p
ticles ~a scaling analysis of this dependence was also
dressed in Ref.@14#!. The generalized Hertz collision equa
tion derived in Ref.@8# was solved analytically to obtain th
velocity-dependent restitution coefficient@20#

e512C1Aa2/5uvW 12•eW u1/51C2A2a4/5uvW 12•eW u2/57•••,
~2!

with

a5S 3

2D 3/2 YAReff

meff~12n2!
, ~3!

whereY is the Young modulus,n is the Poisson ratio,Reff

5R1R2 /(R11R2), meff5m1m2 /(m11m2) (R1/2 and
m1/2 are radii and masses of colliding particles!, andA is the
dissipative constant, which depends on the material par
5573 ©2000 The American Physical Society
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eters~see Ref.@8# for details!. Numerical values for the con
stantsC1 andC2 obtained in Ref.@20# may be also written in
more convenient forms@17#:

C15
G~3/5!Ap

21/552/5G~21/10!
51.15344, ~4!

C25
3

5
C1

2 . ~5!

Although the next-order coefficientsC350.315119C1
3 and

C450.161170C1
4, are now available@17#, we assume that the

dissipative constantA is small enough to ignore these hig
order terms.

The aim of the present study is to analyze how
impact-velocity-dependent restitution coefficient, given
Eq. ~2! for the collision of viscoelastic spheres, influenc
the velocity distribution in a granular gas of identical pa
ticles in the HCS. To address this problem we use the So
polynomial expansion for the velocity distribution functio
and analyze the time dependence of the expansion co
cients.

We want to mention that throughout this paper we assu
viscoelastic particle deformation. This refers to relative
small impact velocities, and, as shown in Refs.@8,17#, ap-
plies to conditions important for astrophysical systems@13#.
Other regimes of deformation which are important for hi
impact velocities, such as plastic deformation or brittle fra
ture, have not been taken into account.

In Sec. II we introduce the necessary variables, brie
sketch the method of Sonine polynomial expansion, a
summarize the knowledge about the velocity distribut
function in granular gases under the assumption of a cons
restitution coefficient. In Sec. III we analyze the Boltzma
equation for the granular gas with a velocity-dependente in
the HCS, and calculate the first few coefficients of the S
nine polynomials expansion. We show that these coefficie
turn out to be time dependent, so that the velocity distri
tion function does not have a simple scaling form. In Sec.
we consider the time evolution of the temperature and
velocity distribution. The high-velocity tail of the distribu
tion function is analyzed in Sec. V. In Sec. VI we summar
our findings. Some technical detail of the calculations
given in the Appendixes.

II. SONINE POLYNOMIAL EXPANSION
FOR GRANULAR GASES

For granular gases where the particles interact via a re
tution coefficiente5const, it was argued that the veloci
distribution f (vW ,t) has a scaling form, i.e., that its time
dependence may be written as~here we follow notations of
Ref. @6#!

f ~vW ,t !5
n

v0
d~ t !

f̃ S v
v0~ t ! D , ~6!

wheren is the number density of the granular gas;v0(t) is
the thermal velocity, defined in terms of the temperature
the granular gas
e
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T~ t !5
1

2
mv0

2~ t !; ~7!

m is the mass of the granular particles; andd is the dimen-
sion. The temperature is related to the second moment o
velocity distribution in the same way as for equilibrium m
lecular systems:

d

2
nT~ t !5E dvW

mv2

2
f ~vW ,t !. ~8!

Then the expansion of the scaling functionf̃ (cW ) @where
cW[vW /v0(t)# in terms of the Sonine polynomials reads@4,6#

f̃ ~cW !5f~c!H 11 (
p51

`

apSp~c2!J , ~9!

wheref(c)[p2d/2 exp(2c2) is the Maxwellian distribution
for the rescaled velocity. The Sonine polynomialsSp(c2)
satisfy the orthogonality conditions

E dcWf~c!Sp~c2!Sp8~c2!5dpp8Np , ~10!

with dpp8 being the Kroneckerd, and with the normalization
constantNp @4,6#. For dimensiond53, which is addressed
in the present study, the first few Sonine polynomials rea

S0~x!51,

S1~x!52x21
3

2
, ~11!

S2~x!5
x2

2
2

5x

2
1

15

8
. ~12!

The coefficientsap of the expansion may be found as th

polynomial moments of the functionf̃ (cW ) @4,6#:

ap5
1

Np
E dcWSp~c2! f̃ ~cW !. ~13!

The coefficientsap do not depend on time for aconstant
restitution coefficient@21#. These were first applied for th
granular gas in Ref.@4#, and then recalculated recently@6#:

a150, ~14!

a25
16~12e!~122e2!

9124d18ed141e130~12e!e2
. ~15!

The first relation@Eq. ~14!# follows from the definition of the
temperature of the granular gas~this we explain in more
detail below!, while Eq. ~15! has been obtained within th
linear approximation with respect toa2. A complete analy-
sis, which goes beyond the linear approximation, was p
formed @7#, and it was shown@7# that linear solution~15! is
rather accurate for the whole range ofe with a maximal
deviation from a total one less than 10%@22#. All the higher-
order coefficients were neglected under the assumption
small deviations from the Maxwellian distribution. Sinceap
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do not depend on time, the scaling form of the velocity d
tribution function ~6! persists with time for the case ofe
5const.

Since the average velocity of a granular gas decreases
to the permanently decreasing temperature, the ‘‘typic
restitution coefficient will increase with time, as follow
from Eq.~2!. Thus one can expect that the coefficients of
Sonine polynomial expansion, which depend on the rest
tion coefficient@see, e.g., Eq.~15!# should also change with
time. This conclusion, however, contradicts the assump
that the scaling function~9! does not depend on time, an
implies that the common scheme of calculation of the Son
polynomials expansion coefficients breaks down ife is not a
constant. For for the latter case, one needs to develop a m
general approach.

III. KINETIC EQUATION FOR THE COEFFICIENTS
OF THE SONINE POLYNOMIAL EXPANSION

We start from the Enskog-Boltzmann equation for the d
tribution function f (rW,vW ,t) for a granular gas of inelasti
spheres, which in the force-free case does not depend orW.
Hence one can write@6,23#

]

]t
f ~vW 1 ,t !5g2~s!s2E dvW 2E deWQ~2vW 12•eW !uvW 12•eW u

3$x f ~vW 1** ,t ! f ~vW 2** ,t !2 f ~vW 1 ,t ! f ~vW 2 ,t !%

[g2~s!I ~ f , f !, ~16!

wheres is the diameter of the particles. The contact value
the two-particle correlation function,g2(s)5(22h)/2(1
2h)3 @24# ~with h5 1

6 pns3 being the packing fraction!,
accounts for the increasing collision frequency due to
excluded volume effects.Q(x) is the Heaviside step func
tion. The velocitiesvW 1** andvW 2** refer to the precollisiona
velocities of the so-called inverse collision, which resu
with vW 1 andvW 2 as the after-collisional velocities@the relation
between these velocities are similar to that of Eq.~1!, but
with an impact-velocity-dependent restitution coefficient; s
Appendix A#. Finally the factor

x511
11

5
C1Aa2/5uvW 12•eW u1/51

66

25
C1

2A2a4/5uvW 12•eW u2/51•••

~17!

in the gain term appears, respectively, from the Jacobia
the transformationdvW 1** dvW 2** →dvW 1dvW 2 and from the
relation between the lengths of the collisional cylinde
euvW 12** •eW udt5uvW 12•eW udt ~see Appendix A for details!. For the
constant restitution coefficient,x51/e25const.

Some important properties of the collisional integral a
hold for the case of the impact-velocity-dependent restitut
coefficient. That is, it may be shown that the relation
-
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d

dt
^c~ t !&5E dvW 1c~vW 1!

]

]t
f ~vW 1 ,t !5E dvW 1c~vW 1!I ~ f , f !

5
g2~s!s2

2 E dvW 1dvW 2E deWQ~2vW 12•eW !

3uvW 12•eW u f ~vW 1 ,t ! f ~vW 2 ,t !D@c~vW 1!1c~vW 2!#

~18!

holds true, wherêc(t)&[*dvW 1c(vW ) f (vW ,t) is the average of
some functionc(vW ), andDc(vW i)[@c(vW i* )2c(vW i)# denotes

a change ofc(vW i) in a direct collision.
Now we analyze the scaling ansatz~6! for the velocity

distribution function. Using this ansatz and performing c
culations similar to that in Ref.@6#, one would find corre-
sponding expressions for the coefficientsap of the Sonine
polynomial expansion. These would turn out to be time d
pendent due to the permanently decreasing average vel
of the cooling gas and thus the permanently increasing ef
tive value of the restitution coefficient. However, this mea
that the simple scaling~6! for the velocity distribution func-
tion does not hold for the case of interest. Technically, as
show below, this follows from the additional time depe
dence of the factorx in the collisional integral, which does
not depend on time fore5const.

Thus it seems natural to write the three-dimensional d
tribution function in the general form

f ~vW ,t !5
n

v0
3~ t !

f̃ ~cW ,t !, ~19!

with

f̃ ~cW ,t !5f~c!H 11 (
p51

`

ap~ t !Sp~c2!J , ~20!

and then find equations for thetime-dependentcoefficients
ap(t).

Substituting Eq.~19! into the Boltzmann equation~16!,
we obtain

1

v0
2

dv0

dt S 31c1

]

]c1
D f̃ ~cW1 ,t !1

1

v0

]

]t
f̃ ~cW1 ,t !

5g2~s!s2n Ĩ~ f̃ , f̃ !, ~21!

where we define the dimensionless collisional integral

Ĩ ~ f̃ , f̃ !5E dcW2E deWQ~2cW12•eW !ucW12•eW u

3$x̃ f̃ ~cW1** ,t ! f̃ ~cW2** ,t !2 f̃ ~cW1 ,t ! f̃ ~cW2 ,t !%.

~22!

The reduced factorx̃,

x̃511
11

5
C1d8ucW12•eW u1/51

66

25
C1

2d82ucW12•eW u2/51•••,

~23!
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depends now on time via a quantity

d8~ t ![Aa2/5@2T~ t !#1/10[d@2T~ t !/T0#1/10. ~24!

Hered[Aa2/5(T0)1/10, T0 is the initial temperature, and fo
simplicity we assume the particles to be of unit mass,m
51.

The rate of change of the thermal velocitydv0 /dt in Eq.
~21! may be expressed in terms of the temperature decay
dT/dt, which reads, according to definitions~7! and~8! and
relation ~18! for the time derivatives of averages,

dT

dt
5

1

3
g2~s!s2nv0

3E dcW1c1
2 Ĩ ~ f̃ , f̃ !52

2

3
BTm2 . ~25!

Here we defineB5B(t)[v0(t)g2(s)s2n, and introduce the
moments of the dimensionless collision integral:

mp[2E dcW1c1
pĨ ~ f̃ , f̃ !. ~26!

With this notation we recast Eq.~21! into the form

m2

3 S 31c1

]

]c1
D f̃ ~cW ,t !1B21

]

]t
f̃ ~cW ,t !5 Ĩ ~ f̃ , f̃ !. ~27!

Note that contrary to the case ofe5const, wherex51/e2

5const, the factorx now depends on time, which does n
allow one to write the collision integral in terms of on
scaling variables. This implies a time dependence of all
momentsmp ~which were time independent for the consta
restitution coefficient!, and correspondingly causes a tim
dependence of the Sonine polynomials expansion co
cientsap .

Multiplying both sides of Eq.~27! by c1
p , and integrating

over cW1, we obtain

m2

3
p^cp&2B21(

k51

`

ȧknkp5mp , ~28!

where integration by parts has been performed, and wh
we define

nkp[E f~c!cpSk~c2!dcW ~29!

and

^cp&[E cpf̃ ~cW ,t !dcW . ~30!

The calculation ofnkp is straightforward; the first of them
read

n2250, n245
15

4
. ~31!

The odd momentŝc2n11& are zero, while the even one
^c2n& may be expressed in terms ofak with 0<k<n. This
follows from the fact thatc2n may be written as a sum o
Sonine polynomialsSk(c

2), with 0<k<n, and from the or-
te

e
t

fi-

re

thogonality condition ~10!. That is, using c25 3
2 S0(c2)

2S1(c2) together with expansion~20! and condition~10!,
one easily finds

^c2&5E dcWf~c!F3

2
S0~c2!2S1~c2!G H (

k50

`

akSk~c2!J
5

3

2
2

3

2
a1 , ~32!

with a051, and where we use the normalization const
N15 3

2 @see Eq.~10!#. From the definitions of temperatur
and of the thermal velocity@Eqs.~7! and ~8!# it follows that
^c2&5 3

2 @also see Eq. 30!#. Then Eq.~32! implies a150 in
accordance with Ref.@6#. Similar considerations yield

^c4&5
15

4
~11a2!. ~33!

The momentsmp may be also expressed in terms of coef
cientsa2 ,a3 , . . . ; therefore, system~28! is an infinite~but
closed! set of equations for these coefficients.

It is not possible to obtain a general solution to the pro
lem. However, since the dissipative parameterd is supposed
to be small, the deviations from the Maxwellian distributio
are not presumably large. Thus we assume that one can
glect all the high-order terms in the expansion~20! with p
.2. Then Eq.~28! is an equation for the coefficienta2. For
p52, Eq. ~28! converts into an identity, sincêc2&5 3

2 , a1
50, and due to Eq.~31!. For p54, we obtain

ȧ22
4

3
Bm2~11a2!1

4

15
Bm450, ~34!

where relations~31! and~33! have been used. In Eq.~34!, B
depends on time as

B~ t !5~8p!21/2tc~0!21@T~ t !/T0#1/2, ~35!

whereT0 is the initial temperature andtc(0) is the initial
mean-collision time

tc~0!2154p1/2g2~s!s2nT0
1/2. ~36!

The time evolution of the temperature is determined by E
~25!, i.e., by the time dependence ofm2.

The time-dependent coefficientsmp(t) may be expressed
in terms ofa2 according to definition~26! and the approxi-

mation f̃ 5f(c)@11a2(t)S2(c2)#. One obtains

mp52 1
2 E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW uf~c1!f~c2!

3$11a2@S2~c1
2!1S2~c2

2!#

1a2
2S2~c1

2!S2~c2
2!%D~c1

p1c2
p!, ~37!

with the definition ofD(c1
p1c2

p) given above. After long and
tedious calculations~details are given in Appendix B!, one
arrives at the following result for the moments:

m25d8@A11A2a21A3a2
2#2d82@A41A5a21A6a2

2#
~38!
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and

m45@B11B2a21B3a2
2#1d8@B41B5a21B6a2

2#

2d82@B71B8a21B9a2
2#, ~39!

whereAn andBn are pure numbers. The coefficientsAn read

A15v0 , A25
6

25
v0 , A35

21

2500
v0 ,

A45v1 , A55
119

400
v1 , A65

4641

640000
v1 , ~40!

with

v0[2A2p21/10GS 21

10DC156.48562 . . . , ~41!

v1[A2p21/5GS 16

5 DC1
259.28569 . . . , ~42!

and the coefficientsBn are

B150, B254A2p, B35
1

8
A2p,

B45
56

10
v0 , B55

1806

250
v0 , B65

567

12500
v0 , ~43!

B75
77

10
v1 , B85

149054

13750
v1 , B95

348424

5500000
v1 .

Thus Eqs.~34! and ~25!, together with Eqs.~24!, ~35!,
~38!, and~39!, form a closed set to find the time evolution
the temperature and the coefficienta2. We want to stress an
important difference for the time evolution of the tempe
ture for the case of the impact-velocity-dependent restitu
coefficient, compared to that of the constant restitution co
ficient. In the former case it is coupled to the time evoluti
of the coefficienta2, while in the latter case there is no suc
coupling sincea25const. This coupling may lead in som
cases to a rather peculiar time dependence of the temp
ture. The problem of the time dependence of the tempera
and the velocity distribution function will be discussed
detail in Sec. IV.

IV. TIME EVOLUTION OF TEMPERATURE AND THE
VELOCITY DISTRIBUTION FUNCTION

To analyze the time evolution of the temperature and
the coefficienta2, characterizing the velocity distributio
function, we introduce the reduced temperatureu(t)
[T(t)/T0 , and recast the set of equations~34! and~25! into
the forms
-
n
f-

ra-
re

f

u̇1t0
21u8/5S 5

3
1

2

5
a21

7

500
a2

2D
2t0

21q1d u17/10S 5

3
1

119

240
a21

1547

128000
a2

2D50,

~44!

ȧ22r 0u1/2m2~11a2!1
1

5
r 0u1/2m450. ~45!

The characteristic time

t0
215

16

5
q0d•tc~0!21 ~46!

describes the time evolution of the temperature~see below!,
with

q0521/5G~21/10!C1/85522/5ApG~3/5!/850.173318 . . . ,
~47!

r 0[
2

3A2p
tc~0!21, ~48!

q1[21/10~v1 /v0!51.53445 . . . . ~49!

To obtain these equations we use the expressions form2(t),
B(t) and for coefficientsAn . Note that the characteristi
time t0 is d21@1 times larger than the mean collision tim
tc(0).

We will find the solution to these equations as expansi
in terms of the small dissipative parameterd @see Eq.~24!#:

u5u01d•u11d2
•u21•••, ~50!

a25a201d•a211d2
•a221•••. ~51!

Substituting Eqs.~50!, ~51!, ~38!, and~39! into Eqs.~44! and
~45!, one can solve these equations perturbatively, for e
order ofd. Collecting terms of the order ofO(1), weobtain

u̇01t0
21S 5

3
1

2

5
a201

7

500
a20

2 Du0
8/550, ~52!

ȧ201r 1u0
1/2S a201

1

32
a20

2 D50, ~53!

where

r 1[
1

5
r 0B25

8

15
tc~0!21, ~54!

and we use the definition ofr 0, and expressions~43! for B2
andB3, which are zero-order coefficients in the expansion
m4 on d. Changing variables

t→t5r 1E
0

t

dt8u0
1/2~ t8! ~55!

in Eq. ~53!, one finds the solution of this~Riccati! equation:
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a20~ t !5
a20~0!

F11
1

32
a20~0!Get2

1

32
a20~0!

. ~56!

According to Eq.~52! the characteristic time scale foru0(t)
is t0@tc(0), therefore; fort;tc(0)!t0 one can approxi-
mate u(t)5T(t)/T0'1. Moreover, if the initial deviation
from the Maxwellian distribution is not large, i.e
a20(0)/32!1, for this time interval one can approximate

a20~ t !'a20~0!e24t/5tE(0), ~57!

with tE5 3
2 tc being the Enskog relaxation time. Therefor

a20(t) vanishes fort;t0@tc(0). This refers to the relax-
ation of an initially non-Maxwellian velocity distribution to
the Maxwellian one. Note that the relaxation occurs with
few collisions per particle, similarly to the relaxation of m
lecular gases.

We now assume that the initial distribution is Maxwe
ian, i.e., thata20(0)50 for t50. Then the deviation from
the Maxwellian distribution originates from the inelastici
of the particle collisions. For the casea20(0)50 @and thus
a2(t)50; see Eq.~56!# the solution to Eq.~52! reads

u0~ t !5
T~ t !

T0
5S 11

t

t0
D 25/3

, ~58!

which coincides with the time dependence of the tempera
obtained previously using scaling arguments@20# ~up to a
constantt0 which may not be determined by scaling arg
ments!.

For the orderO(d), we obtain

u̇11
8

3t0
u0

3/5u11
2

5t0
u0

8/5a212
5

3t0
q1u0

17/1050, ~59!

ȧ211r 1u0
1/2a211r 2u0

3/550, ~60!

with

r 2[S 4

15D21/10~8p!21/2~B425A1!tc
21~0!. ~61!

For t!t0 we haveu0'1, and Eq.~60! reduces to

ȧ211r 1a2152r 2 , ~62!

with the solution

a21~ t !52
r 2

r 1
~12e2r 1t!52h~12e24t/5tE(0)!, ~63!

where

h[r 2 /r 15S 3

10DGS 21

10D21/5C150.415964, ~64!

and we used the definitions ofr 1 andr 2 and the values ofAk
andBk given above. As follows from Eq.~63!, after a tran-
sient time of the order of few collisions per particle, i.e., f
,

re

tE(0),t!t0 , a2(t) saturates to the valuea252hd5
20.415964d, i.e., it changes only slowly on the time sca
;tc(0).

For t@t0 the rescaled temperature varies asu0
'(t/t0)25/3 @see Eq.~58!#, and Eq.~60! reads

ȧ211r 1~ t/t0!25/6a2152r 2~ t/t0!21. ~65!

Using the power-law ansatz

a21~ t !;~ t/t0!2n, ~66!

the asymptotic analysis of Eq.~65! yields the exponentn
51/6 and an estimate for the prefactor. Thus we find, fot
@t0,

a21~ t !52
r 2

r 1
~ t/t0!21/652h~ t/t0!21/6. ~67!

Therefore,a21(t) decays to zero on the time scale;t0, i.e.,
slowly on the time scale;tc(0)!t0. The velocity distribu-
tion thus tends asymptotically to the Maxwellian distrib
tion.

One can also find the general solution of Eq.~60!:

a21~ t !526t0r 2 exp$26t0r 1~11t/t0!1/6%

3E
6t0r 1

6t0r 1(11t/t0)1/6ex

x
dx. ~68!

Noting that

6t0r 15~q0d!21, ~69!

6t0r 25
12

5
d21 ~70!

due to the definitions orr 1 , r 2, andt0, for a2(t)5da21(t)
one can write in an approximation linear with respect tod,

a2~ t !52
12

5
w~ t !21$Li @w~ t !#2Li @w~0!#%, ~71!

where

w~ t ![exp@~q0d!21~11t/t0!1/6#, ~72!

and Li(x) is the logarithmic integral. It is not difficult to
show that from the general expression~71! both limiting
dependencies~63! for t!t0 and ~67! for t@t0 are repro-
duced.

We could not find the general solution foru1(t), how-
ever, one can obtain the solution fort@t0. Substituting
asymptotic expressionsu0(t).(t/t0)25/3 and a21(t).
2h(t/t0)21/6 into Eq.~59! for u1(t), we recast this equation
into the form

u̇11
8

3
~ t/t0!21u15S 2

5
h1

5

3
q1D ~ t/t0!217/6. ~73!

Again a power-law ansatzu1(t);(t/t0)a allows us to obtain
both the exponenta511/6 as well as the corresponding pr
factor. The result foru1(t) for t@t0 reads
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u1~ t !5S 12

25
h12q1D ~ t/t0!211/653.26856~ t/t0!211/6,

~74!

where we used the above results for the constantsh andq1.
From the last equation one can see how the coupling
tween the temperature and the velocity distribution infl
ences the evolution of the temperature. Indeed, if there w
no such coupling, there would be no coupling term in E
~59!, and thus, no contribution from12

25 h to the prefactor of
u1(t) in Eq. ~74!. This would noticeably change the tim
behavior ofu1(t). On the other hand, the leading term in t
time dependence of temperature,u0(t), is not affected by
this kind of coupling.

In Figs. 1 and 2 we show the time dependence of
coefficienta2(t) of the Sonine polynomial expansion and
the temperature of the granular gas. The analytical findi
are compared with the numerical solution of the system
equations~44! and ~45!. As follows from the figures, the
analytical theory reproduces fairly well the numerical resu
for the case of smalld.

As follows from Fig. 1, for smalld the following scenario
of evolution of the velocity distribution takes place for
force-free granular gas. The initial Maxwellian distributio
evolves to a non-Maxwellian distribution, with the discre
ancy between these two characterized by the second co
cient of the Sonine polynomials expansiona2. The deviation
from the Maxwellian distribution~described bya2) quickly
grows, until it saturates after a few collisions per particle a
‘‘steady-state’’ value. At this instant the deviation from th
Maxwellian distribution is maximal, with the valuea2'
20.4d ~Fig. 1, top!. This refers to the first ‘‘fast’’ stage o
the evolution, which takes place on a mean-collision ti
scale;tc(0). After this maximal deviation is reached, th
second ‘‘slow’’ stage of the evolution starts. At this stagea2
decays to zero on a ‘‘slow’’ time scalet0;d21tc(0)
@tc(0), which corresponds to the time scale of the tempe
ture evolution~Fig. 1, middle!; the decay of the coefficien
a2(t) in this regime occurs according to a power law;t21/6

~Fig. 1, bottom!. Asymptotically the Maxwellian distribution
would be achieved, if the clustering process did not occu

Figure 2 illustrates the significance of the first-order c
rectionu1(t) in the time evolution of the temperature. Th
becomes more important as the dissipation parameted
grows ~Fig. 2, top and middle!. At large times the results o
the first-order theory@with u1(t) included# practically coin-
cide with the numerical results, while zero-order theo
@without u1(t)# demonstrates noticeable deviations~Fig. 2,
bottom!.

According to our analysis of the diffusion in granular g
of viscoelastic particles@19#, the clustering is expected to b
retarded, compared to the case of a constante. Therefore, we
may assume that for the time shown in the figures the gra
lar gas is still in the regime of homogeneous cooling.

For larger values ofd the linear theory breaks down. Un
fortunately, the equations obtained for the second order
proximationO(d2) are too complicated to be treated analy
cally. Hence, we studied them only numerically~see Fig. 3!.
As compared to the case of smalld, an additional interme-
diate regime in the time evolution of the velocity distributio
is observed. The first ‘‘fast’’ stage of evolution takes plac
e-
-
re
.

e

s
f

s

ffi-

a

e

-

-

u-

p-

,

as before, on a time scale of few collisions per partic
where maximal deviation from the Maxwellian distributio
is achieved~Fig. 3!. For d>0.15 these maximal values ofa2
are positive. Then, in the second stage~intermediate regime!,
which continues 10–100 collisions,a2 changes its sign and
reaches a maximal negative deviation. Finally, on the th

FIG. 1. Time dependence of the second coefficient of the Son
polynomial expansiona2(t). Time is given in units of the mean
collisional timetc(0). Top: a231000 ~solid lines! for d50.001,
0.005, 0.01, and 0.015~top to bottom!, together with the linear
approximation~dashed lines!. Middle: the same as the top but fo
larger times. Bottom:2a2(t) over time ~log scale! for d50.03,
0.01, 0.003, and 0.001~top to bottom!, together with the power-law
asymptotics;t21/6.
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slow stage,a2(t) relaxes to zero on a slow time scale;t0,
just as for smalld. In Fig. 3 we show the first stage of th
time evolution ofa2(t) for systems with larged. At a certain
value of the dissipative parameterd the behavior change
qualitatively, i.e. the system then reveals another time sc
as discussed above.

Figure 4 shows the numerical solution of Eqs.~44! and
~45! for the second Sonine coefficienta2(t) as a function of
time. One can clearly distinguish the different stages of e
lution of the velocity distribution function.

FIG. 2. Time evolution of the reduced temperature,u(t)
5T(t)/T0. The time is given in units of the mean collisional tim
tc(0). Solid line: numerical solution, short-dashed line:u0(t)5(1
1t/t0)25/3 ~zero-order theory!, long-dashed line:u(t)5u0(t)
1du1(t) ~first-order theory!. Top d50.05 and 0.1~top to bottom!.
Middle: d50.15 and 0.25~top to bottom!. Bottom: the same as th
top but for log scale and larger ranges.
le,

-

Thus we conclude that for the case of a not very sm
dissipative parameterd, the time evolution of the velocity
distribution function~described on the level of the secon
coefficient of the Sonine polynomials expansion! exhibits a
very complicated nonmonotonic behavior with a few diffe
ent regimes. Physically such behavior is caused by the e
tence of an additional intrinsic time scale which describes
viscoelastic collision, and by the coupling of the evolution
the velocity distribution with the time evolution of the tem
perature.

The analysis performed up to now has addressed the m
part of the velocity distribution function. The most importa
component of the distribution is still the Maxwellian, whil
deviations from this have been quantified in terms of
Sonine polynomial expansion. For very large velocitie
however, this is not true and the Maxwellian distributio
may not be used as a zero-order approximation. In Sec. V
address the problem of properties of the velocity distribut
function for v@v0.

V. HIGH-VELOCITY TAIL
OF THE VELOCITY-DISTRIBUTION FUNCTION

The high-velocity tail of the velocity distribution function
in force-free granular gases was analyzed for the case
constant restitution coefficient in Refs.@5,6#. It was shown in
these studies that for large velocities,c@1, the velocity dis-

tribution function behaves asf̃ (c);exp(2constc), i.e., that
the tail c@1 is overpopulated, as compared to the Maxwe
ian distribution;exp(2c2).

Here we use the scheme of analysis proposed in Ref.@5#.
The same arguments as in Refs.@5,6#, lead to a conclusion
that the gain term of the collisional integralĨ may be ne-
glected forc@1 with respect to the loss term, which doe
not depend on the restitution coefficient. Thus, followi
Refs.@5,6#, we approximate the collision integral as

Ĩ ~ f̃ , f̃ !'2pc f̃~cW ,t !, ~75!

and forc@1 write the kinetic equation~27! as

FIG. 3. Time dependence of the second coefficient of the Son
polynomial expansiona2(t)3100. Time is given in units of mean
collisional timetc(0). d50.1,0.11,0.12, . . . ,0.20 ~bottom to top!.
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m2

3
c

]

]c
f̃ ~cW ,t !1B21

]

]t
f̃ ~cW ,t !'2pc f̃~cW ,t !. ~76!

If one would use expansion~20! ~with coefficientsap for

FIG. 4. The second Sonine coefficienta2 for d50.16 over time.
The numerical solutions of Eqs.~44! and ~45! show all stages of
evolution discussed in the text.
p.2 discarded! to substitute it into Eq.~76! for the second
term on the left-hand side of~76! at c@1 one would obtain

B21
] f̃

]t
5

4

3 Fm2~11a2!2
1

5
m4Gf~c!S2~c2!;c4e2c2

,

~77!

where we have used the relation

] f̃ /]t5ȧ2f~c!S2~c2!, ~78!

with ȧ2 according to Eq.~34!, and definition~11! of S2(c2),
which shows thatS2(c2);c4 at c@1. We also take into
account thatm2 , m4, anda2 do not depend onc. For the first
term in the left-hand side of Eq.~76! and for the right-hand
side of Eq.~76!, this substitute yields, correspondingly in th
same limitc@1,

c
] f̃

]c
;2c6e2c2

, ~79!

c f̃;c5e2c2
. ~80!

From Eqs.~77!, ~79!, and ~80! it follows that, although all
terms in the Eq.~76! have the same factore2c2

, the expo-
nents of the power ofc of the prefactor are different for al
terms. This means an inconsistency of substitution~20!, with
ap for p.2 discarded, forc@1. Similarly, it may be shown
that such an inconsistency appears for any order of the
nine polynomial expansion. Indeed, using the Sonine po
nomial expansion~20! up to ~arbitrary! order n yields the
estimate;c(2n12)e2c2

for the first term and;c2ne2c2
for

the second term on the left-hand side of Eq.~76!, while for
the right-hand side of Eq.~76! one obtains;c(2n11)e2c2

.
However, the exponential ansatz

f̃ ~cW ,t !;exp$2w~ t !•c% ~81!

for the kinetic equation~76! turns out to be self-consisten
for c@1. Substituting this into Eq.~76!, one finds that the
function w(t) in Eq. ~81! must satisfy

ẇ1
1

3
m2Bw5pB, ~82!

where the time dependence ofB is given by Eq.~35!, andm2
depends on time viaa2(t) according to Eq.~38!. In the ap-
proximationa2;d, linear with respect tod, and therefore,
according to Eqs.~38! and ~40!, m2(t).d8v0. Then, using
the definition~24! of d8 and expression~35! for B(t), one
obtains

m2~ t !B~ t !5
5

2
t0

21u3/5~ t !,

~83!

B~ t !5
tc~0!21

A8p
u1/2~ t !,
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with t0 being defined by Eq.~46!. With Eq. ~58! for the time
dependence of the temperature in this approximation,
~82! reads

ẇ1
5

6t0
S 11

t

t0
D 21

w5Ap

8
tc~0!21S 11

t

t0
D 25/6

.

~84!

Substituting the ansatzw;(11t/t0)n, we find the exponen
n51/6 and the prefactor, so we arrive at the final result

w~ t !5bd21S 11
t

t0
D 1/6

, ~85!

with

b5Ap

2 S 5

16q0
D5

57/5

23/2G~3/5!
52.25978 . . . . ~86!

Thus the velocity distribution function reads, forc@1,

f̃ ~cW ,t !;expF2
b

d
cS 11

t

t0
D 1/6G . ~87!

Note that the obtained expression~87! refers only for times
t@tc(0), when the deviations from the Maxwellian distribu
tion are already well developed; it is not applicable for t
transient timest;tc(0).

As one can see from Eq.~87! the overpopulation~with
respect to the Maxwellian distribution! of the high-velocity
tail decreases with time on the same time scale;t0 as
a2(t), i.e., the velocity distribution in the system approach
the Maxwellian. However, it should be noted that the abo
considerations are valid as long as the overpopulation in
tail is significant enough to make the gain term in the co
sion integral negligible as compared to the loss term.

VI. CONCLUSION

We studied the velocity distribution in a homogeneou
cooling granular gas of viscoelastic particles, which impl
an impact-velocity-dependent restitution coefficient. We o
served that, contrary to the case of the constant restitu
coefficient, the distribution function may not be represen
in a simple scaling form, where the time dependence of
function occurs only via the time dependence of the temp
ture. The dependence of the restitution coefficient on
impact velocity causes a time dependence of the coeffici
of the Sonine polynomial expansion, which describes the
viation of the velocity distribution from the Maxwellian.

We analyzed the time evolution of the temperature and
the second coefficient of the Sonine polynomials expans
a2. Contrary to the case of the constant restitution coe
cient, the evolution of temperature is now coupled to
time evolution ofa2.

For small values of the dissipative parameterd, we de-
veloped an analytical theory for the time evolution of t
temperature of the granular gas and for the coefficient of
Sonine polynomial expansiona2; the case of largerd was
studied numerically. We observed a complicated nonmo
tonic time behavior of the coefficienta2. For small values of
q.

s
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-
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the dissipative parameterd we detected two different stage
in its time evolution: a first fast stage, which develops on
time scale of the mean-collision timetc ; and a second, slow
stage on the time scale;t0@tc , on which the temperature
of the granular gas changes. In the fast stage a max
deviation from the Maxwellian distribution is achieved, an
then the deviation relaxes to zero during the second s
stage. Our numerical results agree well with the predictio
of the analytical theory for smalld.

Whend is not small, a much more complicated time b
havior of the coefficienta2 has been revealed. In addition t
the two stages of evolution which were observed for the c
of a small dissipative parameter, a regime of intermedi
relaxation has been detected. Physically such complica
behavior is caused by an additional intrinsic time scale wh
describes the viscoelastic collision, and by a coupling of
evolution of the velocity distribution to the time evolution o
temperature.

We also analyzed the high-velocity tail of the veloci
distribution for the case of the impact-velocity-depende
restitution coefficient for viscoelastic particles. We found t
same exponential overpopulation for the tail as for the c
stant restitution coefficient. However, contrary to the lat
case, where the overpopulation of the tail persists with tim
it decreases for the impact dependent restitution coeffici
and the velocity distribution tends to become Maxwellian
the system evolves.

The homogeneous cooling state is the simplest part of
evolution of a granular gas which precedes all other evo
tion steps, which involve spontaneous cluster formati
complicated structure formation in the velocity field, e
Presently we are far from being able to develop a full the
of the evolution of granular gases, beginning from their ge
eration and extending to a fully developed variety of stru
tures. Therefore, we consider the results for the homo
neous cooling state only as the first step towa
understanding the complicated evolution of granular gas
Astrophysical systems such as planetary rings~see, e.g., Ref.
@25#! possibly originate from catastrophic impacts of hea
objects with a planet, which generates a cloud of dust. T
cloud will then undergo an evolution whose first regim
might be considered a homogeneously cooling gas. As
lows from results reported here, the evolution of the veloc
distribution and temperature even in this simplest state is
from being trivial.
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APPENDIX A: DERIVATION OF EQ. „17…

The change of the particle velocities due to the inve
collision is described by
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vW 15vW 1** 2
1

2
@11e~g** !#g** eW ,

~A1!

vW 25vW 2* * 1
1

2
@11e~g** !#g** eW ,

where we introduce the normal relative velocityg**
[vW 12** •eW , and where

e~g** !512C1Aa2/5ug** u1/51C2A2a4/5ug** u2/57•••,
~A2!

according to the viscoelastic character of the particles@see
Eq. ~2!#. Equations~A1! and~A2! imply the conservation of
momentum

vW 11vW 25vW 1** 1vW 2** , ~A3!

and the relation

g52e~g** !g** , ~A4!

with g[vW 12•eW . UsingC25 3
5 C1

2 @Eq. ~5!#, one can also write

g** 52gF11C1Aa2/5ugu1/51
3

5
~C1Aa2/5!2ugu2/57•••G .

~A5!

We use Eq.~A5! to find the relation between the length
the collisional cylinders,ugudt andug** udt, when the trans-
formation of variablesvW 1** ,vW 2** →vW 1vW 2 is made in the col-
lisional integral. One also needs the Jacobian of this tra
formation. To calculate this, it is convenient to choose
coordinate axisZ along the intercenter vectoreW , i.e.,

g[v12,z[v1,z2v2,z . ~A6!

Then, from Eqs.~A1!, it follows that

v1,x** 5v1,x , v1,y** 5v1,y ,

v2,x** 5v2,x , v2,y** 5v2,y ,
~A7!

v1,z** 5v1,z1
1

2
~g** 2g!,

v2,z** 5v2,z2
1

2
~g** 2g!,

where the value ofg** is expressed in terms ofg ~i.e., in
terms ofv1,z andv2,z) according to Eq.~A5!. Thus Eqs.~A7!
explicitly express all components of the inverse-collision v
locities vW 1** and vW 2** in terms ofvW 1 and vW 2. For the Jaco-
bian, straightforward calculations yield

dvW 1** dvW 2** 5F11
6

5
C1Aa2/5ugu1/5

1
21

25
~C1Aa2/5!2ugu2/57•••GdvW 1dvW 2.

~A8!
s-
e

-

Combining Eq.~A8! with Eq. ~A5!, which relates the lengths
of collisional cylinders, one arrives at the factorx @Eq. ~17!#
in the collisional integral.

APPENDIX B: DERIVATION OF THE MOMENTS µp

†EQS. „38… AND „39…‡

To calculate the moments

mp52 1
2 E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW uf~c1!f~c2!

3$11a2@S2~c1
2!1S2~c2

2!#

1a2
2S2~c1

2!S2~c2
2!%D~c1

p1c2
p!, ~B1!

it is convenient to use the center of mass velocityCW and
relative velocitycW12, such that

cW15CW 1
1

2
cW12, cW25CW 2

1

2
cW12. ~B2!

The Jacobian of transformation~B2! is equal to unity, and
the productf(cW1)f(cW2) transforms into

f~cW1!f~cW2!→ 1

~2p!3/2
expS 2

1

2
c12

2 D S 2

p D 3/2

exp~22C2!

[f~cW12!f~CW !. ~B3!

In terms of the variablesCW and cW12 the quantity@S2(c1
2)

1S2(c2
2)# in Eq. ~B1! may be written as

@S2~c1
2!1S2~c2

2!#5C41~CW •cW12!
21

1

16
c12

4 1
1

2
C2c12

2 25C2

2
5

4
c12

2 1
15

4
. ~B4!

For S2(c1
2)S2(c2

2), we obtain

S2~c1
2!S2~c2

2!5K11K21K31K4 , ~B5!

where

K15
1

4
C82

5

2
C61

65

8
C42

75

8
C2, ~B6!

K25
1

1024
c12

8 2
5

128
c12

6 1
65

128
c12

4 2
75

32
c12

2 , ~B7!

K35
3

32
C4c12

4 1
1

4
C6c12

2 1
1

64
C2c12

6 2
15

8
C4c12

2

2
15

32
C2c12

4 1
65

16
C2c12

2 , ~B8!
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K45
1

4
~CW •cW12!

42
1

4
C2~CW •cW12!

2c12
2 2

1

2
C4~CW •cW12!

2

2
1

32
~CW •cW12!

2c12
4 1

5

2
C2~CW •cW12!

21
5

8
~CW •cW12!

2c12
2

2
35

8
~CW •cW12!

21S 15

8 D 2

. ~B9!

For the quantitiesD(c1
p1c2

p) (p52 and 4!, we find

D~c1
21c2

2!52
1

2
~cW12•eW !2~12e2! ~B10!

and

D~c1
41c2

4!52~11e!2~cW12•eW !2~CW •eW !21
1

8
~12e2!2~cW12•eW !4

2
1

4
~12e2!~cW12•eW !2cW12

2 2CW 2~12e2!~cW12•eW !2

24~11e!~CW •cW12!~CW •eW !~cW12•eW !. ~B11!

Substituting Eqs.~B4!, ~B5!, ~B10!, and~B11! into Eq.~B1!,
and using the expansions

~12e2!52C1d8~ t !ucW12•eW u1/52
11

5
C1

2d82~ t !ucW12•eW u2/51•••,

~B12!

~11e!254F12C1d8~ t !ucW12•eW u1/5

1
17

20
C1

2d82~ t !ucW12•eW u2/51•••G , ~B13!

~12e2!254C1
2d82~ t !ucW12•eW u2/51•••, ~B14!

one observes thatm2 andm4 may be expressed in terms o
the basic integrals

Jk,l ,m,n,p,a5E dcW12E dCW E deWQ~2cW12•eW !ucW12•eW u11a

3f~c12!f~C!Ckc12
l ~CW •cW12!

m~CW •eW !n~cW12•eW !p.

~B15!

That is, form2 one has

m25
1

2
d8C1FJ0,0,0,0,2,1/51a2LS 1

5D1a2
2M S 1

5D G
2

11

20
d82C1

2FJ0,0,0,0,2,2/51a2LS 2

5D1a2
2M S 2

5D G
~B16!

where we define
L~a!5J4,0,0,0,2,a1J0,0,2,0,2,a1
1

16
J0,4,0,0,2,a1

1

2
J2,2,0,0,2,a

25J2,0,0,0,2,a2
5

4
J0,2,0,0,2,a1

15

4
J0,0,0,0,2,a ~B17!

and

M ~a!5
1

4
J8,0,0,0,2,a2

5

2
J6,0,0,0,2,a1

65

8
J4,0,0,0,2,a

2
75

8
J2,0,0,0,2,a1

1

1024
J0,8,0,0,2,a2

5

128
J0,6,0,0,2,a

1
65

128
J0,4,0,0,2,a2

75

32
J0,2,0,0,2,a1

3

32
J4,4,0,0,2,a

1
1

4
J6,2,0,0,2,a1

1

64
J2,6,0,0,2,a2

15

8
J4,2,0,0,2,a

1
65

16
J2,2,0,0,2,a1

1

4
J0,0,4,0,2,a2

1

4
J2,2,2,0,2,a

2
1

2
J4,0,2,0,2,a2

1

32
J0,4,2,0,2,a1

5

2
J2,0,2,0,2,a

1
5

8
J0,2,2,0,2,a2

35

8
J0,0,2,0,2,a1S 15

8 D 2

J0,0,0,0,2,a .

~B18!

The basic integrals may be calculated~details are given in
Appendix C!, and the following expressions are obtained:

Jk,l ,m,0,p,a5
~21!p3832(2k1 l 1p1a21)/2

~p1a12!~m11!

3@12~21!m11#GS k1m13

2 D
3GS l 1m1p1a14

2 D ~B19!

for n50,

Jk,l ,m,1,p,a5
~21!p113432(2k1 l 1p1a)/2

~p1a13!~m12!

3@12~21!m#GS k1m14

2 D
3GS l 1m1p1a14

2 D ~B20!

for n51 and
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Jk,l ,m,2,p,a5
~21!p3432(2k1 l 1p1a21)/2

~p1a12!~m11!

3@12~21!m11#GS k1m15

2 D
3GS l 1m1p1a14

2 D Fp1a11

m13
1

1

m11G
~B21!

for n52.
When we compare Eqs.~B16! and ~38! for m2, and use

relations~B19!, ~B20!, and~B21! for the basic integrals, we
find

A15
1

2
C1J0,0,0,0,2,1/552A2p21/10GS 21

10DC156.48562 . . .

[v0 , ~B22!

A45
11

20
C1

2J0,0,0,0,2,2/55A2p21/5GS 16

5 DC1
259.28569 . . .

[v1 . ~B23!

Computing from the basic integralsL(a) and M (a) for a
5 1

5 and 2
5 , and using the relation for theG function G(x

11)5xG(x), we obtain

A25
1

2
C1LS 1

5D5
6

25
v0 , ~B24!

A55
11

20
C1

2LS 2

5D5
119

400
v1 , ~B25!

A35
1

2
C1M S 1

5D5
21

2500
v0 , ~B26!

A65
11

20
C1

2M S 2

5D5
4641

640000
v1 . ~B27!

Similar calculations may be performed form4, and yield
Eq. ~39!, with the coefficientsBk expressed in terms of th
basic integrals:

B154~J0,0,1,1,1,02J0,0,0,2,2,0!54~A2p2A2p!50,
~B28!

B2524S 1

16
J0,4,0,2,2,02J4,0,1,1,1,01J0,0,2,2,2,02J0,0,3,1,1,0

1J4,0,0,2,2,02
1

16
J0,4,1,1,1,01

1

2
J2,2,0,2,2,02

1

2
J2,2,1,1,1,0

2
5

4
J0,2,0,2,2,01

5

4
J0,2,1,1,1,025J2,0,0,2,2,015J2,0,1,1,1,0

1
15

4
J0,0,0,2,2,02

15

4
J0,0,1,1,1,0D54A2p, ~B29!
B454C1S J0,0,0,2,2,1/52
1

2
J0,0,1,1,1,1/51

1

16
J0,2,0,0,2,1/5

1
1

4
J2,0,0,0,2,1/5D5

56

5
A2p21/10GS 21

10DC15
28

5
v0 ,

~B30!

B75C1
2S 11

10
J2,0,0,0,2,2/51

11

40
J0,2,0,0,2,2/51

17

5
J0,0,0,2,2,2/5

1
1

4
J0,0,0,0,4,2/52

6

5
J0,0,1,1,1,2/5D5

77

10
A2p21/5GS 16

5 DC1
2

5
77

10
v1 . ~B31!

We do not give the expressions for the other few coefficie
Bk in terms of the basic integrals, since they are too mu
cumbersome to be written explicitly. Computations of the
is straightforward, and yields the results

B35
1

8
A2p, ~B32!

B55
1806

250
v0 , ~B33!

B65
567

12500
v0 , ~B34!

B85
149054

13750
v1 , ~B35!

B95
348424

5500000
v1 . ~B36!

APPENDIX C: CALCULATIONS OF THE BASIC
INTEGRALS Jk,l ,m,n,p,a

In this appendix we give some details for the calculatio
of the basic integralsJk,l ,m,n,p,a . We need only integrals for
n50, 1, and 2. Evaluation of the integral forn50 is
straightforward; however, forn51 and 2 it requires some
tricks which are described, e.g., in Ref.@23#.

For n51 the basic integrals may be written as

Jk,l ,m,1,p,a5E dgW E dCW f~g!f~C!Ckgl~CW •gW !m
„CW • IW~g!…,

~C1!

with gW [cW12, and with the vectorial integral

IW~g![E dm eW ugW •eW ua~gW •eW !p, ~C2!

with the short-hand notationdm5deWQ(2gW •eW )ugW •eW u.
Similarly, for n52 one can write
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Jk,l ,m,2,p,a5E dgW E dCW f~g!f~C!Ckgl~CW •gW !mCW •Ĥ~g!•CW ,

~C3!

where the dyadĤ(g) is given by

Ĥ~g![E dm eW +eW ugW •eW ua~gW •eW !p, ~C4!

and where+ denotes a direct vector product. Due to symm
try one can writeIW(g)5gW G(g), where the functionG(g)
may be found from the equation

gW • IW~g!5g2G~g!5E deWQ~2gW •eW !ugW •eW u11a~gW •eW !p11.

~C5!

The integral on the right-hand side of Eq.~C5! may be evalu-
ated using spherical coordinates:

E deWQ~2gW •eW !ugW •eW ub~gW •eW !r5
2p~21!r

r 1b11
gr 1b. ~C6!

This yields the functionG(g) and, thus, the vectorial integra

IW~g!52p~21!p11
gp1a

p1a13
gW . ~C7!

For the dyadĤ(g) one can also use symmetry arguments
write

Ĥ~g!5A~g!gW +gW 1B~g!g2Û, ~C8!

whereÛ is a unit dyad~i.e., a diagonal matrix!. Multiplying
Ĥ from both sides bygW and then taking a trace, we obtain th
set of equations for the functionsA(g) andB(g):
v

t,

un
-

o

gW •Ĥ•gW 5Ag41Bg45E deWQ~2gW •eW !ugW •eW u11a~gW •eW !p12

5
2p~21!p

p1a14
gp1a13 ~C9!

and

Tr Ĥ5Ag213Bg25E deWQ~2gW •eW !ugW •eW u11a~gW •eW !p

5
2p~21!p

p1a12
gp1a11. ~C10!

Solving the set of equations~C9! and ~C10! for A(g) and
B(g), we obtain

Ĥ5
2p~21!pgp1a21

~p1a14!~p1a12!
@~p1a11!gW +gW 1g2Û#.

~C11!

With Eqs. ~C7! and ~C11! the basic integralsJk,l ,m,n,p,a for
n51 and 2 can be reduced to the integrals

E dgW E dCW f~g!f~C!Ck1n1gl 1p1a1n2~CW •gW !m1n3,

~C12!

with n150, n250, andn351 to evaluate the integral fo
n51, and withn150, n2521, andn352 andn152, n2
51, andn350 for n52. The computation of these integra
is straightforward, and yield the final results~B19!, ~B20!,
and ~B21! given above.
s,

-

t.
.

J.
@1# I. Goldhirsch and G. Zanetti, Phys. Rev. Lett.70, 1619~1993!;
S. McNamara and W. R. Young, Phys. Rev. E50, R28~1993!;
F. Spahn, U. Schwarz, and J. Kurths, Phys. Rev. Lett.78, 1596
~1997!; T. Aspelmeier, G. Giese, and A. Zippelius, Phys. Re
E 57, 857~1997!; P. Deltour and J. L. Barrat, J. Phys. I7, 137
~1997!.

@2# J. A. C. Orza, R. Brito, T. P. C. van Noije, and M. H. Erns
Int. J. Mod. Phys. C8, 953 ~1997!; T. P. C. van Noije, M. H.
Ernst, R. Brito, and J. A. G. Orza, Phys. Rev. Lett.79, 411
~1997!; R. Brito and M. H. Ernst, Europhys. Lett.43, 497
~1998!.

@3# A collection of recent reviews on granular gases can be fo
in Granular Gases, edited by T. Po¨schel and S. Luding
~Springer-Verlag, Berlin, 2000!.

@4# A. Goldshtein and M. Shapiro, J. Fluid Mech.282, 75 ~1995!.
@5# S. E. Esipov and T. Po¨schel, J. Stat. Phys.86, 1385~1997!.
@6# T. P. C. van Noije and M. H. Ernst, Granular Matter1, 57

~1998!.
@7# N. V. Brilliantov and T. Po¨schel, Phys. Rev. E61, 2809

~2000!.
@8# N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Po¨schel,

Phys. Rev. E53, 5382 ~1996!. Using a different method, the
.

d

same result for the dissipative force was obtained in Ref.@11#.
@9# P. Cundal and O. D. L. Strack, Geotechnique29, 47 ~1979!.

@10# S. Luding, M. Huthmann, S. McNamara, and A. Zippeliu
Phys. Rev. E58, 3416~1998!; M. Huthmann and A. Zippelius,
ibid. 56, R6275~1997!.

@11# W. A. M. Morgado and I. Oppenheim, Phys. Rev. E55, 1940
~1997!; G. Kuwabara and K. Kono, Jpn. J. Appl. Phys.26,
1230 ~1987!.

@12# R. M. Brach, J. Appl. Mech.56, 133~1989!; S. Wall, W. John,
H. C. Wang, and S. L. Goren, Aerosol. Sci. Technol.12, 926
~1990!; W. Goldsmith,Impact: The Theory and Physical Be
haviour of Colliding Solids~Arnold, London, 1960!; P. F.
Luckham, Powder Technol.58, 75 ~1989!; S. F. Foerster, M.
Y. Louge, H. Chang, and Kh. Allia, Phys. Fluids6, 1108
~1994!; S. Hatzes, F. G. Bridges, and D. N. C. Lin, Mon. No
R. Astron. Soc.231, 1191 ~1988!; E. Falcon, C. Laroche, S
Fauve, and C. Coste, Eur. Phys. J. B3, 45 ~1998!.

@13# F. G. Bridges, A. Hatzes, and D. N. C. Lin, Nature~London!
309, 333 ~1984!.

@14# S. Luding, E. Clement, A. Blumen, J. Rajchenbach, and
Duran, Phys. Rev. E50, 4113~1994!.

@15# F. Gerl and A. Zippelius, Phys. Rev. E59, 2361~1999!.



,

ci
h,
.

ith

r
r

n
is

PRE 61 5587VELOCITY DISTRIBUTION IN GRANULAR GASES OF . . .
@16# Y. Taguchi, J. Phys.~Paris! II 2, 2103~1992!.
@17# R. Ramirez, T. Po¨schel, N. V. Brilliantov, and T. Schwager

Phys. Rev. E60, 4465~1999!.
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